ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Giới hạn của hàm số
663 người thi tuần này 4.6 1.7 K lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\]
C. \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\]
D. \[\mathop {\lim }\limits_{x \to L} f\left( x \right) = {x_0}\]
Lời giải
Đáp án cần chọn là: C
Câu 2
A.\[\frac{1}{5}.\]
B. \[\sqrt 5 .\]
C. \[\frac{1}{{\sqrt 5 }}.\]
D. 5
Lời giải
\[\mathop {\lim }\limits_{x \to 3} \sqrt {\frac{{9{x^2} - x}}{{\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}} \]
\[ = \sqrt {\frac{{{{9.3}^2} - 3}}{{\left( {2.3 - 1} \right)\left( {{3^4} - 3} \right)}}} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\]
Đáp án cần chọn là: C
Câu 3
A.\[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L\]
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M\]
C. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L - M\]
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M + L\]
Lời giải
Đáp án cần chọn là: D
Câu 4
A.0.
B.1.
C.2.
D.3.
Lời giải
\[\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right| = \left| {{{\left( {\sqrt 3 } \right)}^2} - 4} \right| = 1\]
Đáp án cần chọn là: B
Câu 5
A.\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\]
C. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\]
D. \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\]
Lời giải
Số L là: + giới hạn bên phải của hàm số\[y = f\left( x \right)\] kí hiệu là\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
+ giới hạn bên trái của hàm số \[y = f\left( x \right)\] kí hiệu là\[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\]
Đáp án cần chọn là: A
Câu 6
Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to - \infty } \left( {x - {x^3} + 1} \right)\] là:
A.1.
B.\[ - \infty .\]
C.0.
D.\[ + \infty .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - L\]
C. \[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - L\]
D. \[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[ - \infty .\]
B. \[ + \infty .\]
C. \[ - \frac{{15}}{2}.\]
D. 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.\[\mathop {\lim }\limits_{x \to - \infty } c = c\]
B. \[\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \]
C. \[\mathop {\lim }\limits_{x \to - \infty } {x^k} = 0\]
D. \[\mathop {\lim }\limits_{x \to + \infty } {x^k} = - \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = + \infty \]
B. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
C. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
D. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.0.
B.\[ + \infty .\]
C. \[\sqrt 2 - 1.\]
D. \[ - \infty .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[\mathop {\lim }\limits_{x \to + \infty } {x^n} = - \infty \]
B. \[\mathop {\lim }\limits_{x \to \pm \infty } {x^n} = + \infty \]
C. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]
D. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = + \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 1}}{{2{x^2} + 1}} = \frac{1}{2}\]
B. \[\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} + 3x - 1} \right) = - \infty \]
C. \[\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{2x + 1}} = \frac{1}{2}\]
D. \[\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 3}}{{2x + 1}} = \frac{1}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[T = \frac{{12}}{{25}}.\]
B. \[T = \frac{4}{{25}}.\]
C. \[T = \frac{4}{{15}}.\]
D. \[T = \frac{6}{{25}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.