ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Giới hạn của hàm số
38 người thi tuần này 4.6 1.9 K lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ điểm đến mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Diện tích hình trụ, thể tích khối trụ
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bài toán về điểm biểu diễn số phức trong mặt
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách giữa hai đường thẳng chéo nhau
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\]
C. \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\]
D. \[\mathop {\lim }\limits_{x \to L} f\left( x \right) = {x_0}\]
Lời giải
Đáp án cần chọn là: C
Câu 2
A.\[\frac{1}{5}.\]
B. \[\sqrt 5 .\]
C. \[\frac{1}{{\sqrt 5 }}.\]
D. 5
Lời giải
\[\mathop {\lim }\limits_{x \to 3} \sqrt {\frac{{9{x^2} - x}}{{\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}} \]
\[ = \sqrt {\frac{{{{9.3}^2} - 3}}{{\left( {2.3 - 1} \right)\left( {{3^4} - 3} \right)}}} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\]
Đáp án cần chọn là: C
Câu 3
A.\[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L\]
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M\]
C. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L - M\]
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M + L\]
Lời giải
Đáp án cần chọn là: D
Câu 4
A.0.
B.1.
C.2.
D.3.
Lời giải
\[\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right| = \left| {{{\left( {\sqrt 3 } \right)}^2} - 4} \right| = 1\]
Đáp án cần chọn là: B
Câu 5
A.\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\]
C. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\]
D. \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\]
Lời giải
Số L là: + giới hạn bên phải của hàm số\[y = f\left( x \right)\] kí hiệu là\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
+ giới hạn bên trái của hàm số \[y = f\left( x \right)\] kí hiệu là\[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\]
Đáp án cần chọn là: A
Câu 6
Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to - \infty } \left( {x - {x^3} + 1} \right)\] là:
A.1.
B.\[ - \infty .\]
C.0.
D.\[ + \infty .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\]
B. \[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - L\]
C. \[\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - L\]
D. \[\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[ - \infty .\]
B. \[ + \infty .\]
C. \[ - \frac{{15}}{2}.\]
D. 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.\[\mathop {\lim }\limits_{x \to - \infty } c = c\]
B. \[\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \]
C. \[\mathop {\lim }\limits_{x \to - \infty } {x^k} = 0\]
D. \[\mathop {\lim }\limits_{x \to + \infty } {x^k} = - \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = + \infty \]
B. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
C. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
D. \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f\left( x \right)} \right] = - \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.0.
B.\[ + \infty .\]
C. \[\sqrt 2 - 1.\]
D. \[ - \infty .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[\mathop {\lim }\limits_{x \to + \infty } {x^n} = - \infty \]
B. \[\mathop {\lim }\limits_{x \to \pm \infty } {x^n} = + \infty \]
C. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]
D. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = + \infty \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 1}}{{2{x^2} + 1}} = \frac{1}{2}\]
B. \[\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} + 3x - 1} \right) = - \infty \]
C. \[\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{2x + 1}} = \frac{1}{2}\]
D. \[\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 3}}{{2x + 1}} = \frac{1}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[T = \frac{{12}}{{25}}.\]
B. \[T = \frac{4}{{25}}.\]
C. \[T = \frac{4}{{15}}.\]
D. \[T = \frac{6}{{25}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.