Câu hỏi:

23/05/2022 522 Lưu

Cho \[n = 2k + 1,k \in N\]. Khi đó:

A.\[\mathop {\lim }\limits_{x \to + \infty } {x^n} = - \infty \]

B. \[\mathop {\lim }\limits_{x \to \pm \infty } {x^n} = + \infty \]

C. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]

D. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = + \infty \]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:\[\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty \]  nếu k chẵn và\[\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty \] nếu k lẻ.

Do đó, vì \[n = 2k + 1,k \in N\] là số nguyên dương lẻ nên\[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L\]

B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M\]

C. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L - M\]

D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = M + L\]

Lời giải

Giả sử\[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\] Khi đó:\[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\]

Đáp án cần chọn là: D

Lời giải

\[\mathop {\lim }\limits_{x \to 3} \sqrt {\frac{{9{x^2} - x}}{{\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}} \]

\[ = \sqrt {\frac{{{{9.3}^2} - 3}}{{\left( {2.3 - 1} \right)\left( {{3^4} - 3} \right)}}} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 1}}{{2{x^2} + 1}} = \frac{1}{2}\]

B. \[\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} + 3x - 1} \right) = - \infty \]

C. \[\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{2x + 1}} = \frac{1}{2}\]

D. \[\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 3}}{{2x + 1}} = \frac{1}{2}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP