Câu hỏi:

23/05/2022 426

 Cho f(x) là đa thức thỏa mãn \[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}}\]. Tính \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt[3]{{6f(x) + 5}} - 5}}{{{x^2} + x - 6}}\]

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

Đặt \[g\left( x \right) = \frac{{f\left( x \right) - 20}}{{x - 2}}\] ta có\[\mathop {\lim }\limits_{x \to 2} g\left( x \right) = 10\] và\[f\left( x \right) - 20 = g\left( x \right)\left( {x - 2} \right) \Leftrightarrow f\left( x \right) = g\left( x \right)\left( {x - 2} \right) + 20\]

\[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {g\left( x \right)\left( {x - 2} \right) + 20} \right] = 10.\left( {2 - 2} \right) + 20 = 20\]

Bước 2:

Ta có:

\[\begin{array}{l}\mathop {lim}\limits_{x \to 2} \frac{{\sqrt[3]{{6f(x) + 5}} - 5}}{{{x^2} + x - 6}} = \mathop {lim}\limits_{x \to 2} \frac{{6f(x) + 5 - 125}}{{(x - 2)(x + 3)\left[ {{{\left( {\sqrt[3]{{6f(x) + 5}}} \right)}^2} + 5\sqrt[3]{{6f(x) + 5}} + 25} \right]}}\\ = \mathop {lim}\limits_{x \to 2} \frac{{6[f(x) - 20]}}{{(x - 2)(x + 3)\left[ {{{\left( {\sqrt[3]{{6f(x) + 5}}} \right)}^2} + 5\sqrt[3]{{6f(x) + 5}} + 25} \right]}}\\ = \mathop {lim}\limits_{x \to 2} \frac{{f(x) - 20}}{{x - 2}}.\frac{6}{{(x + 3)\left[ {{{\left( {\sqrt[3]{{6f(x) + 5}}} \right)}^2} + 5\sqrt[3]{{6f(x) + 5}} + 25} \right]}}\\ = 10.\frac{6}{{(x + 3)\left[ {{{\left( {\sqrt[3]{{6.20 + 5}}} \right)}^2} + 5\sqrt[3]{{6.20 + 5}} + 25} \right]}} = \frac{4}{{25}}\end{array}\]

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\] khi đó:

Xem đáp án » 23/05/2022 938

Câu 2:

Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right|\] là:

Xem đáp án » 23/05/2022 504

Câu 3:

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{2x}}{{\sqrt {1 - x} }}khi\,x < 1}\\{\sqrt {3{x^2} + 1} \,khi\,x \ge 1}\end{array}} \right.\). Khi đó \[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\] là:

Xem đáp án » 23/05/2022 445

Câu 4:

Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to 3} \sqrt {\frac{{9{x^2} - x}}{{\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}} \] là:

Xem đáp án » 23/05/2022 409

Câu 5:

Cho \[n = 2k + 1,k \in N\]. Khi đó:

Xem đáp án » 23/05/2022 406

Câu 6:

Khẳng định nào sau đây Sai?

Xem đáp án » 23/05/2022 394
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua