ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hệ bất phương trình
838 người thi tuần này 4.6 2 K lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[S = \left( { - \infty ; - 3} \right).\]
B. \[S = \left( { - \infty ;2} \right).\]
C. \[S = \left( { - 3;2} \right).\]
D. \[S = \left( { - 3; + \infty } \right).\]
Lời giải
Ta có \(\left\{ {\begin{array}{*{20}{c}}{2 - x >0}\\{2x + 1 < x - 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 >x}\\{x < - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x < 2}\\{x < - 3}\end{array} \Leftrightarrow x < - 3} \right.\)
Đáp án cần chọn là: A
Câu 2
A.\[S = \left( { - 2;\frac{4}{5}} \right).\]
B. \[S = \left( {\frac{4}{5}; + \infty } \right).\]
C. \[S = \left( { - \infty ; - 2} \right).\]
D. \[S = \left( { - 2; + \infty } \right).\]
Lời giải
Ta có
\(\left\{ {\begin{array}{*{20}{c}}{\frac{{2x - 1}}{3} >- x + 1}\\{\frac{{4 - 3x}}{2} < 3 - x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x - 1 >- 3x + 3}\\{4 - 3x < 6 - 2x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x >4}\\{ - x < 2}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x >\frac{4}{5}}\\{x >- 2}\end{array}} \right. \Leftrightarrow x >\frac{4}{5}\)
Đáp án cần chọn là: B
Câu 3
A.\[\frac{{11}}{2}.\]
B.8
C. \[\frac{9}{2}.\]
D. \[\frac{{47}}{{10}}.\]
Lời giải
Bất phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x - 1 < 2x - 3}\\{5 - 3x < 2x - 6}\\{3x \le x + 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 < x}\\{11 \le 5x}\\{2x \le 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x >2}\\{x \ge \frac{{11}}{5}}\\{x \le \frac{5}{2}}\end{array} \Leftrightarrow } \right.\frac{{11}}{5} \le x \le \frac{5}{2}\)
Suy ra \[a + b = \frac{{11}}{5} + \frac{5}{2} = \frac{{47}}{{10}}.\]
Đáp án cần chọn là: D
Câu 4
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
Lời giải
Bất phương trình\[{x^2} - 1 \le 0\] có tập nghiệm\[{S_1} = \left[ { - 1;1} \right]\]
Bất phương trình \[x - m >0\] có tập nghiệm\[{S_2} = \left( {m; + \infty } \right)\]
Hệ có nghiệm \[ \Leftrightarrow {S_1} \cap {S_2} \ne \emptyset \Leftrightarrow m < 1\]
Đáp án cần chọn là: C
Câu 5
A.\[m < \frac{1}{3}.\]
B. \[0 \ne m < \frac{1}{3}.\]
C. \[m \ne 0.\]
D. m < 0.
Lời giải
Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)- Với m = 0, ta có hệ bất phương trình trở thành\(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\) hệ bất phương trình vô nghiệm.
- Với \[m \ne 0\], ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)
Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \[\frac{{m + 2}}{{{m^2}}} >\frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\]
Vậy \[0 \ne m < \frac{1}{3}\] là giá trị cần tìm.
Đáp án cần chọn là: B
Câu 6
A.m>2
B.m=2 .
C.\[m \le 2\].
D. m < 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.m>3
B.\[m \ge 3\].
C.m<3.
D.\[m \le 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[\left( { - \frac{1}{4}; - 1} \right) \notin S\]
B.\[S = \left\{ {\left( {x;y} \right)|4x - 3y = 2} \right\}\]
C.Biểu diễn hình học của S là nửa mặt phẳng chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
D.Biểu diễn hình học của S là nửa mặt phẳng không chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.Trên mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của hệ bất phương trình đã cho là miền tứ giác ABCO kể cả các cạnh với \[A\left( {0;3} \right),B\left( {\frac{{25}}{8};\frac{9}{8}} \right),C\left( {2;0} \right)\] và O(0;0).
B.Đường thẳng \[\Delta :x + y = m\;\] luôn có giao điểm với miền nghiệm của hệ với mọi giá trị của m.
C.Giá trị lớn nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 174.
D.Giá trị nhỏ nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.