ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Phương trình logarit và một số phương pháp giải

717 lượt thi 35 câu hỏi 45 phút

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án

Câu 1:

Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:

Xem đáp án

Câu 2:

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]

Xem đáp án

Câu 3:

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:

Xem đáp án

Câu 4:

Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].

Xem đáp án

Câu 5:

Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

Xem đáp án

Câu 6:

Giải phương trình \[{\log _4}(x + 1) + {\log _4}(x - 3) = 3\]

Xem đáp án

Câu 11:

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:

Xem đáp án

Câu 12:

Cho hai số thực dương a và b thỏa mãn \[lo{g_4}a = lo{g_6}b = lo{g_9}\left( {a + b} \right).\] Tính tỉ số \(\frac{a}{b}\).

Xem đáp án

Câu 14:

Cho phương trình \[{\log _3}x.{\log _5}x = {\log _3}x + {\log _5}x\]. Khẳng định nào sau đây là đúng?

Xem đáp án

Câu 15:

Tìm tất cả các giá trị thực của m để phương trình \[2lo{g_2}|x| + lo{g_2}|x + 3| = m\;\] có 3 nghiệm thực phân biệt.

Xem đáp án

Câu 17:

Cho x>0; \[x \ne 1\] thỏa mãn biểu thức \[\frac{1}{{lo{g_2}x}} + \frac{1}{{lo{g_3}x}} + ... + \frac{1}{{lo{g_{2017}}x}} = M\;\]. Khi đó x bằng:

Xem đáp án

Câu 18:

Tìm tập nghiệm của phương trình  \[{\log _3}x + \frac{1}{{{{\log }_9}x}} = 3\]

Xem đáp án

Câu 19:

Tìm tập hợp tất cả các giá trị của tham số m để phương trình  \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm

Xem đáp án

Câu 21:

Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)

Xem đáp án

Câu 24:

Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]

Xem đáp án

4.6

143 Đánh giá

50%

40%

0%

0%

0%