Câu hỏi:
27/06/2022 179Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện : \(\left\{ {\begin{array}{*{20}{c}}{cotx > 0}\\{cosx > 0}\end{array}} \right.\left( 1 \right)\)
Ta có :\[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right) \Leftrightarrow {\log _3}{\left( {\cot x} \right)^2} = {\log _2}\left( {\cos x} \right) = t\]
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{{(cotx)}^2} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{co{s^2}x}}{{si{n^2}x}} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right.\)
\[ \Rightarrow \frac{{{4^t}}}{{1 - {4^t}}} = {3^t} \Leftrightarrow {4^t} - {3^t} + {12^t} = 0 \Leftrightarrow {\left( {\frac{4}{3}} \right)^t} + {4^t} = 1\]
Đặt \[f(t) = {\left( {\frac{4}{3}} \right)^t} + {\left( 4 \right)^t} \Rightarrow f'(t) = {\left( {\frac{4}{3}} \right)^t}\ln \frac{4}{3} + {\left( 4 \right)^t}\ln 4 > 0\]suy ra\[f(t) = 1\]có tối đa 1 nghiệm.
Nhận thấy t=−1 là nghiệm của phương trình
\[ \Rightarrow {\log _2}\left( {\cos x} \right) = - 1 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \pm \frac{\pi }{3} + k2\pi \Rightarrow x = \frac{\pi }{3} + k2\pi \]( do đk (1)).
Ta có : \[0 < \frac{\pi }{3} + k2\pi < 2017\pi \Leftrightarrow - \frac{1}{6} < k < \frac{{3025}}{3}\]Do k nguyên nên\[k = 0,1, \ldots ,1008\]
Vậy phương trình có 1009 nghiệm.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Câu 2:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Câu 3:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Câu 4:
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Câu 5:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]
Câu 6:
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
về câu hỏi!