Câu hỏi:

27/06/2022 224

Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện : \(\left\{ {\begin{array}{*{20}{c}}{cotx > 0}\\{cosx > 0}\end{array}} \right.\left( 1 \right)\)

Ta có :\[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right) \Leftrightarrow {\log _3}{\left( {\cot x} \right)^2} = {\log _2}\left( {\cos x} \right) = t\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{{(cotx)}^2} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{co{s^2}x}}{{si{n^2}x}} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right.\)

\[ \Rightarrow \frac{{{4^t}}}{{1 - {4^t}}} = {3^t} \Leftrightarrow {4^t} - {3^t} + {12^t} = 0 \Leftrightarrow {\left( {\frac{4}{3}} \right)^t} + {4^t} = 1\]

Đặt \[f(t) = {\left( {\frac{4}{3}} \right)^t} + {\left( 4 \right)^t} \Rightarrow f'(t) = {\left( {\frac{4}{3}} \right)^t}\ln \frac{4}{3} + {\left( 4 \right)^t}\ln 4 > 0\]suy ra\[f(t) = 1\]có tối đa 1 nghiệm.

Nhận thấy t=−1 là nghiệm của phương trình

\[ \Rightarrow {\log _2}\left( {\cos x} \right) = - 1 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \pm \frac{\pi }{3} + k2\pi \Rightarrow x = \frac{\pi }{3} + k2\pi \]( do đk (1)).

Ta có : \[0 < \frac{\pi }{3} + k2\pi < 2017\pi \Leftrightarrow - \frac{1}{6} < k < \frac{{3025}}{3}\]Do k nguyên nên\[k = 0,1, \ldots ,1008\]

Vậy phương trình có 1009 nghiệm.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?

Xem đáp án » 13/07/2024 3,021

Câu 2:

Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:

Xem đáp án » 27/06/2022 2,730

Câu 3:

Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)

Xem đáp án » 27/06/2022 1,866

Câu 4:

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]

Xem đáp án » 27/06/2022 873

Câu 5:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]

Xem đáp án » 27/06/2022 532

Câu 6:

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:

Xem đáp án » 27/06/2022 499

Câu 7:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án » 27/06/2022 380

Bình luận


Bình luận