ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về đường thẳng và mặt cầu
45 người thi tuần này 4.6 1.8 K lượt thi 23 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Khoa học xã hội - Vấn đề phát triển ngành giao thông vận tải
ĐGNL ĐHQG Hà Nội - Khoa học xã hội - Thiên nhiên chịu ảnh hưởng sâu sắc của biển
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Sự truyền tin qua xinap
ĐGNL ĐHQG Hà Nội - Khoa học xã hội - Vấn đề khai thác lãnh thổ theo chiều sâu ở Đông Nam Bộ
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về đường thẳng và mặt phẳng
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Tọa độ giao điểm của (S) và Ox là nghiệm của hệ\(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {{(y + 1)}^2} + {z^2} = {R^2}}\\{x = t}\\{y = 0}\\{z = 0}\end{array}} \right.\left( * \right)\)
(S) tiếp xúc với Ox khi và chỉ khi (*) có nghiệm kép\[ \Leftrightarrow {t^2} + 1 = {R^2}\]có nghiệm kép
\[ \Leftrightarrow {R^2} - 1 = 0 \Leftrightarrow R = 1\]
Đáp án cần chọn là: D
Câu 2
A.\(5\sqrt 2 \)
B. \[10\sqrt 2 \]
C. \[2\sqrt 5 \]
D. \[4\sqrt 5 \]
Lời giải
Phương trình mặt cầu (S) có dạng\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = {R^2}\]
Phương trình tham số của d là:\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = 2 + t}\\{z = - 3 - t}\end{array}} \right.\)
Tọa độ giao điểm của (S) và d là nghiệm của hệ
\(\left\{ {\begin{array}{*{20}{c}}{{{(x - 1)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {R^2}}\\{x = - 1 + 2t}\\{y = 2 + t}\\{z = - 3 - t}\end{array}\left( * \right)} \right.\)
(S) tiếp xúc với dd khi và chỉ khi (∗) có nghiệm kép
\[ \Leftrightarrow {( - 2 + 2t)^2} + {(4 + t)^2} + {( - 6 - t)^2} = {R^2}\] có nghiệm kép
\[ \Leftrightarrow 6{t^2} + 12t + 56 - {R^2} = 0\] có nghiệm kép
\[ \Leftrightarrow {\rm{\Delta '}} = {\left( { - 6} \right)^2} - 6.(56 - {R^2}) = 0 \Leftrightarrow 6{R^2} - 300 = 0 \Leftrightarrow {R^2} = 50 \Leftrightarrow R = 5\sqrt 2 \]
Suy ra đường kính của mặt cầu (S) là\[10\sqrt 2 \]
Đáp án cần chọn là: B
Câu 3
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24\]
Lời giải
Phương trình mặt cầu (S) có dạng \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = {R^2}\]
Phương trình tham số của d là:\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2t}\\{z = 2 + t}\end{array}} \right.\)
Tọa độ giao điểm của (S) và d là nghiệm của hệ
\(\left\{ {\begin{array}{*{20}{c}}{{{(x - 2)}^2} + {y^2} + {{(z - 1)}^2} = {R^2}}\\{x = 1 + t}\\{y = 2t}\\{z = 2 + t}\end{array}\left( * \right)} \right.\)
(S) tiếp xúc với dd khi và chỉ khi (∗) có nghiệm kép
\[ \Leftrightarrow {(t - 1)^2} + {(2t)^2} + {(1 + t)^2} = {R^2}\] có nghiệm kép
\[ \Leftrightarrow 6{t^2} + 2 = {R^2}\] có nghiệm kép\[ \Leftrightarrow {R^2} = 2\]
Đáp án cần chọn là: A
Câu 4
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24\]
Lời giải
Phương trình mặt cầu (S) có dạng\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = {R^2}\]
Phương trình tham số của d là:\(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2t}\\{z = 2 + t}\end{array}} \right.\)
Tọa độ giao điểm của (S) và d là nghiệm của hệ
\[{x^2} + {y^2} + {z^2} + x + y + z - 6 = 0\]\(\left\{ {\begin{array}{*{20}{c}}{{{(x - 2)}^2} + {y^2} + {{(z - 1)}^2} = {R^2}}\\{x = 1 + t}\\{y = 2t}\\{z = 2 + t}\end{array}\left( * \right)} \right.\)
(S) tiếp xúc với dd khi và chỉ khi (∗) có nghiệm kép
\[ \Leftrightarrow {(t - 1)^2} + {(2t)^2} + {(1 + t)^2} = {R^2}\] có nghiệm kép
\[ \Leftrightarrow 6{t^2} + 2 = {R^2}\] có nghiệm kép\[ \Leftrightarrow {R^2} = 2\]
Đáp án cần chọn là: A
Câu 5
A.\[{x^2} + {y^2} + {z^2} + x + y + z - 6 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y + 2z - 3 = 0\]
C. \[{x^2} + {y^2} + {z^2} - 2x + 3y + 5z + 3 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 7x - 2z + 6 = 0\]
Lời giải
\[A \in {\rm{\Delta }} \Rightarrow A\left( {t;t;t} \right)\]
- ThayA(t;t;t) vào\[{x^2} + {y^2} + {z^2} + x + y + z - 6 = 0\]ta có\[3{t^2} + 3t - 6 = 0\]
Phương trình có 2 nghiệm phân biệt. Loại
- Thay\[A\left( {t;t;t} \right)\]vào\[{x^2} + {y^2} + {z^2} + 2x - 4y + 2z - 3 = 0\]ta có\[3{t^2} - 3 = 0\]
Phương trình có 2 nghiệm phân biệt. Loại
- Thay\[A\left( {t;t;t} \right)\]vào\[{x^2} + {y^2} + {z^2} - 2x + 3y + 5z + 3 = 0\]ta có\[3{t^2} + 6t + 3 = 0\]
Phương trình có nghiệm kép. Thỏa mãn
- Thay\[A\left( {t;t;t} \right)\]vào\[{x^2} + {y^2} + {z^2} - 7x - 2z + 6 = 0\]ta có \[3{t^2} - 9t + 6 = 0\]
Phương trình có 2 nghiệm phân biệt. Loại
Đáp án cần chọn là: C
Câu 6
A.\[{x^2} + {y^2} + {z^2} + 4x - 8y + 2z + 2 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + x - 2y + z + 1 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 4y + 4z + 4 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]
B. Trục Ox
C.TrụcOy
D.Trục Oz
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[AB = \frac{{\sqrt {126} }}{7}\]
B. \[AB = \frac{{\sqrt {123} }}{7}\]
C. \[AB = \sqrt {\frac{{126}}{7}} \]
D. \[AB = \frac{{\sqrt {129} }}{7}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.\[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 9\]
B. \[{(x + 3)^2} + {(y - 2)^2} + {z^2} = 25\]
C. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 64\]
D. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 25\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[{(x - 2)^2} + {y^2} + {z^2} = 4\]
B. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 2\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 2)^2} + {(y + 1)^2} + {z^2} = 4\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.\[{(x - 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
B. \[{(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
C. \[{(x + 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.4 mặt cầu
B.2 mặt cầu.
C.1 mặt cầu.
D.Vô số mặt cầu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2.\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9.\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4.\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[{x^2} + {(y - 3)^2} + {(z - 1)^2} = 20\]
B. \[{x^2} + {(y + 1)^2} + {(z + 2)^2} = 5\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z + 3)^2} = 20\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 14\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.I(1;−2;2),I(5;2;10)
B.I(1;−2;2),I(0;3;0)
C.I(5;2;10),I(0;−3;0)
D.I(1;−2;2),I(−1;2;−2)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[2x - 2y + z - 2 = 0\] và\[2x - 2y + z + 16 = 0\]
B. \[2x - 2y + z + 2 = 0\] và\[2x - 2y + z - 16 = 0\]
C. \[2x - 2y - 3\sqrt 8 + 6 = 0\] và\[2x - 2y - 3\sqrt 8 - 6 = 0\]
D. \[2x - 2y + 3\sqrt 8 - 6 = 0\] và\[2x - 2y - 3\sqrt 8 - 6 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
A.\[{(x + 3)^2} + {(y + 1)^2} + {(z - 3)^2} = {\rm{\;}}\frac{4}{9}\]
B. \[{(x - 3)^2} + {(y + 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
C. \[{(x + 3)^2} + {(y + 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
D. \[{(x - 3)^2} + {(y - 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
A. \[(S):{(x + 2)^2} + {(y + 4)^2} + {(z + 3)^2} = \frac{2}{7}\]
B. \[(S):{(x - 2)^2} + {(y - 4)^2} + {(z - 3)^2} = \frac{9}{{14}}\]
C. \[(S):{(x - 2)^2} + {(y - 4)^2} + {(z - 3)^2} = \frac{2}{7}\]
D. \[(S):{(x + 2)^2} + {(y + 4)^2} + {(z + 3)^2} = \frac{9}{{14}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
A.\[\sqrt {110} \]
B. \[3\sqrt {10} \]
C. \[\frac{{3\sqrt {10} }}{5}\]
D. \[\frac{{\sqrt {110} }}{5}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
A.\(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 9t}\\{y = 1 + 9t}\\{z = 3 + 8t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 5t}\\{y = 1 + 3t}\\{z = 3}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 - t}\\{z = 3}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 4t}\\{y = 1 + 3t}\\{z = 3 - 3t}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
A.\[2\sqrt 6 \]
B. \[2\sqrt 3 \]
C. \[\sqrt 3 \]
D. \[\sqrt 6 \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
A.\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
B. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 4.\]
C. \[\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 2} \right)^2} = 20.\]
D. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 5.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.