Câu hỏi:

30/06/2022 241 Lưu

Trong không gian Oxyz, cho hai mặt phẳng \[(\alpha ):x - my + z + 6m + 3 = 0\;\]và \[(\beta ):mx + y - mz + 3m - 8 = 0\]; hai mặt phẳng này cắt nhau theo giao tuyến là đường thẳng \[\Delta \]. Gọi \[\Delta '\] là hình chiếu của \[\Delta \] lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng \[\Delta '\] luôn tiếp xúc với một mặt cầu cố định có tâm I(a;b;c) thuộc mặt phẳng OxyOxy. Tính giá trị biểu thức \[P = 10{a^2} - {b^2} + 3{c^2}.\]

A.P=56.

B.P=9.

C.P=41.

D.P=73.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bước 1: Biểu diễn M và vectơ chỉ phương của \(\Delta \) theo m.

Mặt phẳng\[(\alpha ):x - my + z + 6m - 3z = 0\] có một vectơ pháp tuyến là

\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz + 3m - 8 = (\alpha ) \cap (\beta )\]

\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz\] có một vectơ pháp tuyến là

\[\overrightarrow {{n_2}} = (m;1; - m).\] Ta có\[M\left( { - 3m + \frac{4}{m} - 3;0; - 3m - \frac{4}{m}} \right) \in {\rm{\Delta }} = \left( \alpha \right) \cap \left( \beta \right)\]

Do đó Δ có một vectơ chỉ phương là\[\vec u = \left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \left( {{m^2} - 1;2m;{m^2} + 1} \right)\]

Bước 2: Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Tìm c.

Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Khi đó (P) có một vectơ pháp tuyến là\[\vec n = [\vec u;\vec k] = \left( {2m;1 - {m^2};0} \right)\]

Phương trình mặt phẳng (P) là :\[2mx + \left( {1 - {m^2}} \right)y + 6{m^2} + 6m - 8 = 0\]

Vì\[I(a;b;c) \in (Oxy)\] nên I(a;b;0).

Bước 3: Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu \[(S) \Rightarrow d(I;(P)) = R\]. Tìm a và b

Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu\[(S) \Rightarrow d(I;(P)) = R\]

\[ \Leftrightarrow \frac{{\left| {2ma + \left( {1 - {m^2}} \right)b + 6{m^2} + 6m - 8} \right|}}{{\sqrt {4{m^2} + {{\left( {1 - {m^2}} \right)}^2}} }} = R > 0\]

\[ \Leftrightarrow \frac{{\left| {2m(a + 3) + (6 - b){m^2} + b - 8} \right|}}{{{m^2} + 1}} = R > 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2m(a + 3) + (6 - b){m^2} + b - 8 = R({m^2} + 1)}\\{2m(a + 3) + (6 - b){m^2} + b - 8 = - R({m^2} + 1)}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = R}\\{b - 8 = R}\\{R > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = - R}\\{b - 8 = - R}\\{R > 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = - 3 = 0}\\{6 - b = b - 8}\\{ - R = 6 - b < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{6 - b = b - 8}\\{R = 6 - b > 0}\end{array}} \right.}\end{array}} \right.\)</>

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 7}\end{array}} \right.\)

Vậy I(−3;7;0), do đó \[P = 10{a^2} - {b^2} + 3{c^2} = 41\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]

B. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 4.\]

C. \[\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 2} \right)^2} = 20.\]

D. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 5.\]

Lời giải

Khoảng cách từ tâm I đến trục Oz là: \[d\left( {I;\left( {Oz} \right)} \right) = \sqrt {{3^2} + {4^2}} = 5.\]

Vì  tiếp xúc với trục Oz nên bán kính mặt cầu R=5.

Vậy phương trình cần tìm là 

\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]

Đáp án cần chọn là: A

Câu 2

A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2.\]

B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9.\]

C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4.\]

D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24.\]

Lời giải

\[\overrightarrow {{u_d}} = (1;2;1)\] Lấy điểm\[M(1;0;2) \in d\]

\[\begin{array}{*{20}{l}}{\overrightarrow {MI} = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\vec u} \right] = ( - 2;2; - 2)}\\{R = d(I,d) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 }\end{array}\]

Vậy phương trình mặt cầu tâm I(2;0;1) bán kính \(\sqrt 2 \) là:

\[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 9\]

B. \[{(x + 3)^2} + {(y - 2)^2} + {z^2} = 25\]

C. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 64\]

D. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 25\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[{x^2} + {y^2} + {z^2} + 4x - 8y + 2z + 2 = 0\]

B. \[{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 2 = 0\]

C. \[{x^2} + {y^2} + {z^2} + x - 2y + z + 1 = 0\]

D. \[{x^2} + {y^2} + {z^2} - 2x + 4y + 4z + 4 = 0\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\[{(x - 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]

B. \[{(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]

C. \[{(x + 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]

D. \[{(x + 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP