Câu hỏi:

30/06/2022 108

Trong không gian Oxyz, cho hai mặt phẳng \[(\alpha ):x - my + z + 6m + 3 = 0\;\]và \[(\beta ):mx + y - mz + 3m - 8 = 0\]; hai mặt phẳng này cắt nhau theo giao tuyến là đường thẳng \[\Delta \]. Gọi \[\Delta '\] là hình chiếu của \[\Delta \] lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng \[\Delta '\] luôn tiếp xúc với một mặt cầu cố định có tâm I(a;b;c) thuộc mặt phẳng OxyOxy. Tính giá trị biểu thức \[P = 10{a^2} - {b^2} + 3{c^2}.\]

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Biểu diễn M và vectơ chỉ phương của \(\Delta \) theo m.

Mặt phẳng\[(\alpha ):x - my + z + 6m - 3z = 0\] có một vectơ pháp tuyến là

\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz + 3m - 8 = (\alpha ) \cap (\beta )\]

\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz\] có một vectơ pháp tuyến là

\[\overrightarrow {{n_2}} = (m;1; - m).\] Ta có\[M\left( { - 3m + \frac{4}{m} - 3;0; - 3m - \frac{4}{m}} \right) \in {\rm{\Delta }} = \left( \alpha \right) \cap \left( \beta \right)\]

Do đó Δ có một vectơ chỉ phương là\[\vec u = \left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \left( {{m^2} - 1;2m;{m^2} + 1} \right)\]

Bước 2: Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Tìm c.

Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Khi đó (P) có một vectơ pháp tuyến là\[\vec n = [\vec u;\vec k] = \left( {2m;1 - {m^2};0} \right)\]

Phương trình mặt phẳng (P) là :\[2mx + \left( {1 - {m^2}} \right)y + 6{m^2} + 6m - 8 = 0\]

Vì\[I(a;b;c) \in (Oxy)\] nên I(a;b;0).

Bước 3: Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu \[(S) \Rightarrow d(I;(P)) = R\]. Tìm a và b

Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu\[(S) \Rightarrow d(I;(P)) = R\]

\[ \Leftrightarrow \frac{{\left| {2ma + \left( {1 - {m^2}} \right)b + 6{m^2} + 6m - 8} \right|}}{{\sqrt {4{m^2} + {{\left( {1 - {m^2}} \right)}^2}} }} = R > 0\]

\[ \Leftrightarrow \frac{{\left| {2m(a + 3) + (6 - b){m^2} + b - 8} \right|}}{{{m^2} + 1}} = R > 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2m(a + 3) + (6 - b){m^2} + b - 8 = R({m^2} + 1)}\\{2m(a + 3) + (6 - b){m^2} + b - 8 = - R({m^2} + 1)}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = R}\\{b - 8 = R}\\{R > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = - R}\\{b - 8 = - R}\\{R > 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = - 3 = 0}\\{6 - b = b - 8}\\{ - R = 6 - b < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{6 - b = b - 8}\\{R = 6 - b > 0}\end{array}} \right.}\end{array}} \right.\)</>

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 7}\end{array}} \right.\)

Vậy I(−3;7;0), do đó \[P = 10{a^2} - {b^2} + 3{c^2} = 41\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.

Xem đáp án » 30/06/2022 4,453

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\;\]. Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \)và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.

Xem đáp án » 30/06/2022 3,372

Câu 3:

Trong không gian với hệ tọa độ  Oxyz,  cho mặt cầu (S) có phương trình

\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.

Xem đáp án » 30/06/2022 2,688

Câu 4:

Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình  mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].

Xem đáp án » 30/06/2022 2,626

Câu 5:

Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:

Xem đáp án » 30/06/2022 930

Câu 6:

Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0)  và cắt trục Oy tại hai điểm A,B mà AB=8 là

Xem đáp án » 30/06/2022 360

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ  có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:

Xem đáp án » 30/06/2022 288

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn