ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp đổi biến số để tìm nguyên hàm
407 người thi tuần này 4.6 1.9 K lượt thi 20 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ điểm đến mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Diện tích hình trụ, thể tích khối trụ
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bài toán về điểm biểu diễn số phức trong mặt
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách giữa hai đường thẳng chéo nhau
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[dt = u'\left( x \right)dx\]
B. \[dx = u'\left( t \right)dt\]
C. \[dt = \frac{1}{{u\left( x \right)}}dx\]
D. \[dx = \frac{1}{{u\left( t \right)}}dt\]
Lời giải
Đáp án cần chọn là: A
Câu 2
A.\[\smallint f\left( {3x} \right){\rm{d}}x = 2x\ln \left( {9x - 1} \right) + C.\]
B. \[\smallint f\left( {3x} \right){\rm{d}}x = 6x\ln \left( {3x - 1} \right) + C.\]
C. \[\smallint f\left( {3x} \right){\rm{d}}x = 6x\ln \left( {9x - 1} \right) + C.\]
D. \[\smallint f\left( {3x} \right){\rm{d}}x = 3x\ln \left( {9x - 1} \right) + C.\]
Lời giải
Đặt\[t = 3x \Rightarrow dt = 3dx \Rightarrow dx = \frac{{dt}}{3}\] khi đó:
\[\begin{array}{*{20}{l}}{\smallint f\left( {3x} \right){\rm{d}}x\; = \frac{1}{3}\smallint f\left( t \right)dt\; = \frac{1}{3}\left( {2t\ln \left( {3t - 1} \right)} \right) + C}\\{ = \frac{1}{3}\left( {2.3x.\ln \left( {3.3x - 1} \right)} \right) + C = 2x\ln \left( {9x - 1} \right) + C}\end{array}\]
Vậy \[\smallint f\left( {3x} \right){\rm{d}}x\; = 2x\ln \left( {9x - 1} \right) + C\]
Đáp án cần chọn là: A
Câu 3
A.\[xf\left( {{x^2}} \right)dx = f\left( t \right)dt\]
B. \[xf\left( {{x^2}} \right)dx = \frac{1}{2}f\left( t \right)dt\]
C. \[xf\left( {{x^2}} \right)dx = 2f\left( t \right)dt\]
D. \[xf\left( {{x^2}} \right)dx = {f^2}\left( t \right)dt\]
Lời giải
Ta có:\[t = {x^2} \Rightarrow dt = 2xdx \Rightarrow xdx = \frac{{dt}}{2}\]
\[ \Rightarrow xf\left( {{x^2}} \right)dx = f\left( {{x^2}} \right).xdx = f\left( t \right).\frac{{dt}}{2} = \frac{1}{2}f\left( t \right)dt\]
Đáp án cần chọn là: B
Câu 4
A.\[f\left( x \right)dx = - tdt\]
B. \[f\left( x \right)dx = 2tdt\]
C. \[f\left( x \right)dx = - 2{t^2}dt\]
D. \[f\left( x \right)dx = 2{t^2}dt\]
Lời giải
Ta có: \[\sqrt {1 - {{\cos }^2}x} = t\]
\[ \Rightarrow {t^2} = 1 - {\cos ^2}x \Rightarrow 2tdt = 2\cos x\sin xdx = \sin 2xdx \Rightarrow \sin 2xdx = 2tdt\]
Suy ra\[f\left( x \right)dx = \sin 2x\sqrt {1 - {{\cos }^2}x} dx = \sqrt {1 - {{\cos }^2}x} .\sin 2xdx = t.2tdt = 2{t^2}dt\]
Đáp án cần chọn là: D
Câu 5
A.\[I = \frac{1}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} - \frac{1}{3}\left( {{x^3} + 1} \right)\sqrt {{x^3} + 1} + C\]
B. \[I = \frac{2}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} - \frac{2}{3}\left( {{x^3} + 1} \right)\sqrt {{x^3} + 1} + C\]
C. \[I = \frac{2}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} + C\]
D. \[I = \frac{2}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} + \left( {{x^3} + 1} \right)\sqrt {{x^3} + 1} + C\]
Lời giải
\[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx = \smallint 3{x^2}.{x^3}\sqrt {{x^3} + 1} dx\]
Đặt \[\sqrt {{x^3} + 1} = t \Rightarrow {x^3} + 1 = {t^2} \Rightarrow 3{x^2}dx = 2tdt\]
\[ \Rightarrow I = \smallint \left( {{t^2} - 1} \right).t.2tdt = 2\smallint \left( {{t^4} - {t^2}} \right)dt = \frac{2}{5}{t^5} - \frac{2}{3}{t^3} + C\]
\[ = \frac{2}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} - \frac{2}{3}\left( {{x^3} + 1} \right)\sqrt {{x^3} + 1} + C\]
Đáp án cần chọn là: B
Câu 6
A.\[F\left( x \right) = - 2\sqrt {1 - \ln x} + \frac{2}{3}\left( {1 - \ln x} \right)\sqrt {1 - \ln x} + 3\]
B. \[F\left( x \right) = - \sqrt {1 - \ln x} + \frac{1}{3}\left( {1 - \ln x} \right)\sqrt {1 - \ln x} + 3\]
C. \[F\left( x \right) = - 2\sqrt {1 - \ln x} - \frac{2}{3}\left( {1 - \ln x} \right)\sqrt {1 - \ln x} + 3\]
D. \[F\left( x \right) = 2\sqrt {1 - \ln x} - \frac{2}{3}\left( {1 - \ln x} \right)\sqrt {1 - \ln x} + 3\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[I = t - \frac{{{t^2}}}{2} + C\]
B. \[I = \frac{{{t^2}}}{2} - t + C\]
C. \[I = \frac{{{t^2}}}{2} - \frac{{{t^2}}}{3} + C\]
D. \[I = - \frac{{{t^2}}}{2} + \frac{{{t^2}}}{3} + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[I = \frac{4}{3}\smallint \left( {2{u^2} + 1} \right)du\]
B. \[I = \frac{4}{3}\smallint \left( { - {u^2} + 1} \right)du\]
C. \[I = \frac{4}{3}\smallint \left( {{u^2} - 1} \right)du\]
D. \[I = \frac{4}{3}\smallint \left( {2{u^2} - 1} \right)du\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[dx = \tan tdt\]
B. \[dx = - \left( {1 + {{\cot }^2}t} \right)dt\]
C. \[dx = \left( {1 + {{\tan }^2}t} \right)dt\]
D. \[dx = - \left( {1 + {{\cot }^2}x} \right)dt\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[f\left( x \right)dx = \left( {1 + {{\tan }^2}t} \right)dt\]
B. \[f\left( x \right)dx = dt\]
C. \[f\left( x \right)dx = \left( {1 + {t^2}} \right)dt\]
D. \[f\left( x \right)dx = \left( {1 + {{\cot }^2}t} \right)dt\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[x = 1 - \sqrt 3 \]
B. \[x = 1\]
C. \[x = - 1\]
D. \[x = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[\smallint f\left( x \right)d{\rm{x}} = \frac{1}{3}\sqrt {3{{\rm{x}}^2} + 2} + C\]
B. \[\smallint f\left( x \right)d{\rm{x}} = - \frac{1}{3}\sqrt {3{{\rm{x}}^2} + 2} + C\]
C. \[\smallint f\left( x \right)d{\rm{x}} = \frac{1}{6}\sqrt {3{{\rm{x}}^2} + 2} + C\]
D. \[\smallint f\left( x \right)d{\rm{x}} = \frac{2}{3}\sqrt {3{{\rm{x}}^2} + 2} + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[I = - \,\smallint {\cos ^2}t\,\,{\rm{d}}t.\]
B. \[I = \smallint {\sin ^2}t\,\,{\rm{d}}t.\]
C. \[I = \smallint {\cos ^2}t\,\,{\rm{d}}t.\]
D. \[I = \frac{1}{2}\smallint \left( {1 + \cos 2t} \right){\rm{d}}t.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
A.\[\frac{{{\pi ^2}}}{2} + \ln \frac{\pi }{2} + 1\]
B. \[\frac{{{\pi ^2}}}{4} - \ln \frac{\pi }{2} + 1.\]
C. \[\frac{{{\pi ^2}}}{8}.\]
D. \[\frac{{{\pi ^2}}}{8} + \ln \frac{\pi }{2} + 1.\]Trả lời:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
A.\[\smallint f(5x + 2)dx = 5F(x) + 2 + C\]
B. \[\smallint f(5x + 2)dx = F(5x + 2) + C\]
C. \[\smallint f(5x + 2)dx = \frac{1}{5}F(5x + 2) + C\]
D. \[\smallint f(5x + 2)dx = 5F(5x + 2) + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
A.\[\ln \left| {\cos x} \right| + C\]
B. \[\ln \left| {\sin x} \right| + C\]
C. \[\sin x + C\]
D. \[\tan x + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.