Câu hỏi:
28/06/2022 309Tính \[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx = \smallint 3{x^2}.{x^3}\sqrt {{x^3} + 1} dx\]
Đặt \[\sqrt {{x^3} + 1} = t \Rightarrow {x^3} + 1 = {t^2} \Rightarrow 3{x^2}dx = 2tdt\]
\[ \Rightarrow I = \smallint \left( {{t^2} - 1} \right).t.2tdt = 2\smallint \left( {{t^4} - {t^2}} \right)dt = \frac{2}{5}{t^5} - \frac{2}{3}{t^3} + C\]
\[ = \frac{2}{5}{\left( {{x^3} + 1} \right)^2}\sqrt {{x^3} + 1} - \frac{2}{3}\left( {{x^3} + 1} \right)\sqrt {{x^3} + 1} + C\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì
Câu 2:
Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:
Câu 5:
Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là
Câu 6:
Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.
về câu hỏi!