Câu hỏi:
28/06/2022 443Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt\[x = \frac{1}{{\sin t}} \Leftrightarrow {\rm{d}}x = {\left( {\frac{1}{{\sin t}}} \right)^\prime }{\rm{d}}t \Leftrightarrow {\rm{d}}x = - \frac{{\cos t}}{{{{\sin }^2}t}}{\rm{d}}t\]
Và\[\frac{{\sqrt {{x^2} - 1} }}{{{x^3}}} = {\sin ^3}t.\sqrt {\frac{1}{{{{\sin }^2}t}} - 1} = {\sin ^3}t.\sqrt {\frac{{1 - {{\sin }^2}t}}{{{{\sin }^2}t}}} = {\sin ^3}t.\frac{{\cos t}}{{\sin t}} = {\sin ^2}t.\cos t.\]
Khi đó
\[I = \smallint {\sin ^2}t.\cos t.\left( { - \frac{{\cos t}}{{{{\sin }^2}t}}} \right){\rm{d}}t = - \,\smallint {\cos ^2}t\,{\rm{d}}t = - \frac{1}{2}\smallint \left( {1 + \cos 2t} \right){\rm{d}}t.\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:
Câu 5:
Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là
Câu 6:
Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.
về câu hỏi!