ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Phương trình đường elip

12 người thi tuần này 4.6 0.9 K lượt thi 16 câu hỏi 30 phút

🔥 Đề thi HOT:

482 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

1.4 K lượt thi 235 câu hỏi
336 người thi tuần này

Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)

7.5 K lượt thi 150 câu hỏi
192 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai

9.7 K lượt thi 50 câu hỏi
190 người thi tuần này

Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)

21.5 K lượt thi 150 câu hỏi
76 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ

3.9 K lượt thi 36 câu hỏi
64 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ

3.4 K lượt thi 50 câu hỏi
61 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)

371 lượt thi 235 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 4:

Elip (E) có độ dài trục bé bằng tiêu cự. Tâm sai của (E) là:

Xem đáp án

Câu 6:

Elip có độ dài trục lớn là 12, độ dài trục nhỏ là 8 có phương trình chính tắc là:

Xem đáp án

Câu 7:

Phương trình chính tắc của elip có độ dài trục lớn là 20, tâm sai là \(e = \frac{3}{5}\) là:

Xem đáp án

Câu 8:

Phương trình chính tắc của elip có tiêu cự là 6, tâm sai là \[e = \frac{3}{5}\]

Xem đáp án

Câu 9:

Phương trình chính tắc của elip có  hai đỉnh là A(5;0)  và B(0;3) là:

Xem đáp án

Câu 10:

Cho elip  chính tắc (E) có tiêu điểm F1(4;0) và một đỉnh là A(5;0). Phương trình chính tắc của elip (E)là:

Xem đáp án

Câu 11:

Phương trình chính tắc của elip có  hai tiêu điểm là F1(−1;0),F2(1;0)  và tâm sai \(e = \frac{1}{5}\) là:

Xem đáp án

Câu 12:

Phương trình chính tắc của elip có một đỉnh là B(0;−2), tiêu cự là \(2\sqrt 5 \) là:

Xem đáp án

Câu 13:

Phương trình chính tắc của elip có một đỉnh là A(0;−4), tâm sai \(e = \frac{3}{5}\).

Xem đáp án

Câu 14:

Phương trình chính tắc của elip có đỉnh là A(2;0)  và đi qua \[M( - 1;\frac{{\sqrt 3 }}{2})\] là:

Xem đáp án

Câu 15:

Phương trình chính tắc của elip có đi qua hai điểm \[M\left( {2\sqrt 2 ;\frac{1}{3}} \right)\] và \[N\left( {2;\frac{{\sqrt 5 }}{3}} \right)\] là:

Xem đáp án

4.6

189 Đánh giá

50%

40%

0%

0%

0%