Câu hỏi:
17/05/2022 657Cho elip (E) có tiêu cự là 2c, độ dài trục lớn và trục nhỏ lần lượt là 2a và 2b. Trong các mệnh đề sau, mệnh đề nào đúng?
Quảng cáo
Trả lời:
Vì \[{a^2} = {b^2} + {c^2}\]và\[a,b,c >0\]nên ta có\[{a^2} >{c^2} \Leftrightarrow a >c\] Hiển nhiên\[b < a\]
Đáp án cần chọn là: D
>- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Elip\[\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1 \Rightarrow {F_1}{F_2} = 2c = 2\sqrt {25 - 9} = 8\]
Gọi\[M\left( {{x_M};{y_M}} \right) \in \left( E \right) \Rightarrow M{F_1} + M{F_2} = 2a = 10 \Rightarrow p = \frac{{M{F_1} + M{F_2} + {F_1}{F_2}}}{2} = 9\]
Diện tích tam giác \[M{F_1}{F_2}\] là:
\[{S_{M{F_1}{F_2}}} = \frac{1}{2}{F_1}{F_2}.d\left( {M;Ox} \right) = \frac{1}{2}.8.{y_M} = 4\left| {{y_M}} \right| = 4{y_M}\,\,\,\left( {do\,\,{y_M} >0} \right)\]
Lại có:\[{S_{M{F_1}{F_2}}} = p.r \Leftrightarrow 4{y_M} = 9.\frac{4}{3} \Leftrightarrow {y_M} = 3 \in {y_M} \in \left( {\sqrt 8 ;5} \right)\]
Đáp án cần chọn là: C
Lời giải
Phương trình elip cần tìm có dạng\[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\]
Vì elip qua\[M\left( {2\sqrt 2 ;\frac{1}{3}} \right)\] nên ta có\[\frac{8}{{{a^2}}} + \frac{1}{{9{b^2}}} = 1\]
Vì elip qua\[N\left( {2;\frac{{\sqrt 5 }}{3}} \right)\] nên ta có\[\frac{4}{{{a^2}}} + \frac{5}{{9{b^2}}} = 1\]
Ta có hệ phương trình\(\left\{ {\begin{array}{*{20}{c}}{\frac{8}{{{a^2}}} + \frac{1}{{9{b^2}}} = 1}\\{\frac{4}{{{a^2}}} + \frac{5}{{9{b^2}}} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{a^2} = 9}\\{{b^2} = 1}\end{array}} \right.\)
Vậy elip có phương trình là\[\frac{{{x^2}}}{9} + \frac{{{y^2}}}{1} = 1\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.