ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hàm số mũ
495 người thi tuần này 4.6 1.5 K lượt thi 28 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hàm số mũ \[y = {a^x}(0 < a \ne 1)\] đồng biến khi a > 1.
Đáp án cần chọn là: A
Câu 2
A.Đồ thị hàm số \[y = {a^x}(0 < a \ne 1)\] đi qua điểm (0;0)
>B.Đồ thị hàm số \[y = {a^x}(0 < a \ne 1)\]có tiệm cận đứng x=0.
>C.Đồ thị hàm số \[y = {a^x}(0 < a \ne 1)\]cắt trục hoành tại duy nhất 1 điểm.
>D.Đồ thị hàm số \[y = {a^x}(0 < a \ne 1)\]nằm hoàn toàn phía trên trục hoành.
>Lời giải
Đồ thị hàm số \[y = {a^x}(0 < a \ne 1)\]nằm hoàn toàn phía trên trục hoành.
Đáp án cần chọn là: D
>Câu 3
A.Hàm số \[y = {a^{ - x}}(0 < a \ne 1)\]đồng biến nếu a > 1.>
B.Hàm số \[y = {a^{ - x}}(0 < a \ne 1)\]nghịch biến nếu 0 < a < 1.
>C.Hàm số \[y = {a^{ - x}}(0 < a \ne 1)\]đồng biến nếu 0 < a < 1.
>D.Hàm số \[y = {a^{ - x}}(0 < a \ne 1)\]luôn nghịch biến trên R.
>Lời giải
Ta có:
Hàm số\[y = {a^{ - x}}\] nghịch biến khi a>1 nên các đáp án B, D đều sai.
\[y = {a^{ - x}} = \frac{1}{{{a^x}}} = {\left( {\frac{1}{a}} \right)^x}(0 < a \ne 1)\] nên hàm số đồng biến nếu\[\frac{1}{a} > 1 \Leftrightarrow 0 < a < 1\]
Đáp án cần chọn là: C
>>Câu 4
A.Đồ thị hàm số \[y = {2^x}\] trùng với đồ thị hàm số \[y = {\left( {\frac{1}{2}} \right)^{ - x}}\]
B.Đồ thị hàm số \[y = {2^x}\]trùng với đồ thị hàm số \[y = {2^{ - x}}\]
C.Đồ thị hàm số \[y = {2^x}\]đối xứng với đồ thị hàm số \[y = {\left( {\frac{1}{2}} \right)^{ - x}}\] qua trục hoành
D.Đồ thị hàm số \[y = {2^x}\] đối xứng với đồ thị hàm số \[y = {\left( {\frac{1}{2}} \right)^{ - x}}\]qua trục tung.
Lời giải
Ta có: \[y = {\left( {\frac{1}{2}} \right)^{ - x}} = \frac{1}{{{{\left( {\frac{1}{2}} \right)}^x}}} = \frac{1}{{\frac{1}{{{2^x}}}}} = {2^x}\] nên hai hàm số\[y = {2^x}\] và\[y = {\left( {\frac{1}{2}} \right)^{ - x}}\] là một. Do đó chúng có chung đồ thị.
Đáp án cần chọn là: A
Câu 5
A.Đồ thị hàm số \[y = {\left( {\frac{1}{3}} \right)^x}\] đối xứng với đồ thị hàm số \[y = - {\left( {\frac{1}{3}} \right)^x}\] qua trục tung.
B.Đồ thị hàm số \[y = {\left( {\frac{1}{3}} \right)^x}\]đối xứng với đồ thị hàm số \[y = - {\left( {\frac{1}{3}} \right)^x}\]qua trục hoành.
C.Đồ thị hàm số \[y = {\left( {\frac{1}{3}} \right)^x}\]đối xứng với đồ thị hàm số \[y = - {\left( {\frac{1}{3}} \right)^x}\]qua đường thẳng y = x
D.Đồ thị hàm số \[y = {\left( {\frac{1}{3}} \right)^x}\]cắt đồ thị hàm số \[y = - {\left( {\frac{1}{3}} \right)^x}\]tại điểm (1;0).
Lời giải
Vì\[{\left( {\frac{1}{3}} \right)^x}\] và \[ - {\left( {\frac{1}{3}} \right)^x}\] đối nhau nên đồ thị hai hàm số đó đối xứng nhau qua Ox.
Đáp án cần chọn là: B
Câu 6
A.\[y = {\left( {\frac{1}{3}} \right)^x}\]
B. \[y = {2^x}\]
C. \[y = 3{x^3}\]
D. \[y = {\left( {\frac{1}{3}} \right)^{ - x}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[y = {2^{ - x}}\]
B. \[y = {\left( {\frac{1}{2}} \right)^{ - x}}\]
C. \[y = - {\left( {\frac{1}{2}} \right)^x}\]
D. \[y = - {2^x}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.c > a > b
B.c > b > a
C.a > c > b
D.b > a > c
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.0<a<b<1
B.0<b<1<a
C.0<a<1<b
D.0<b<a<1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[\left( {\frac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}\]
B. \[\left( {\frac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}.\ln 2\]
C. \[\frac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\]
D. \[\left( {\frac{1}{x} + 2x} \right)\frac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.\[y' = y\ln 3 - {\ln ^2}3\]
B. \[y'.\ln 3 = y + \ln 3\]
C. \[y' = y - {\ln ^2}3\]
D. \[y' = y - \ln 3\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[{I^2} + 3I = 2\]
B. \[{I^3} + {I^2} - 2 = 0\]
C. \[\frac{{I - 1}}{{I + 1}} = 1\]
D. \[3I - 2 = 2{I^2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.Nếu \[{a^{{x_1}}} < {a^{{x_2}}}\] thì \[{x_1} < {x_2}\]
>B.Nếu \[{a^{{x_1}}} < {a^{{x_2}}}\] thì \[{x_1} > {x_2}\]>
C.Nếu \[{a^{{x_1}}} < {a^{{x_2}}}\] thì \[\left( {a - 1} \right)\left( {{x_1} - {x_2}} \right) < 0\]
>D.Nếu \[{a^{{x_1}}} < {a^{{x_2}}}\] thì \[\left( {a - 1} \right)\left( {{x_1} - {x_2}} \right) > 0\]>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[f\left( x \right) < 1 \Leftrightarrow x + {x^2}{\log _2}7 < 0\]
B. \[f\left( x \right) < 1 \Leftrightarrow x\ln 2 + {x^2}\ln 7 < 0\]
C. \[f\left( x \right) < 1 \Leftrightarrow x{\log _7}2 + {x^2} < 0\]
D. \[f\left( x \right) < 1 \Leftrightarrow 1 + x{\log _2}7 < 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[b = \frac{a}{2}.\]
B. \[b = 2a.\]
C. \[b = {a^{ - 2}}\]
D. \[b = {a^2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[m = e\]
B. \[m = {e^2}\]
C. \[m = {e^3}\]
D. \[m = {e^5}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
A.\[m + M = 1\]
B. \[M - m = e\]
C. \[M.m = \frac{1}{{{e^2}}}\]
D. \[\frac{M}{m} = {e^2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
A.18
B.12
C.27
D.\[\frac{{27}}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
A.\[{\rm{D}} = \left[ {2;3} \right]\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
A.\[f'\left( 1 \right) = \pi .\]
B. \[f'\left( 1 \right) = {\pi ^2} + \ln \pi \]
C. \[f'\left( 1 \right) = {\pi ^2} + \pi \ln \pi .\]
D. \[f'\left( 1 \right) = 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 23
A.\[\left( {3; + \infty } \right)\]
B. \[\left( { - \infty ;3} \right)\]
C. \[\left( {2;3} \right)\]
D. \[\left( { - \infty ;1} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 24
A.\[y = {\left( {\frac{3}{\pi }} \right)^{ - x}}\]
B. \[y = {\left( {1,5} \right)^x}\]
C. \[y = {\left( {\frac{2}{e}} \right)^x}\]
D. \[y = {\left( {\sqrt 3 + 1} \right)^x}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 25
A.\[y' = \frac{{{6^x}}}{{\ln 6}}\]
B. \[y' = {6^x}\ln 6\]
C. \[y' = x{.6^{x - 1}}\]
D. \[y' = {6^x}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 26
A.\[.\left[ {0; + \infty } \right)\]
B. \(\mathbb{R}\)
C. \[\left( {0; + \infty } \right)\]
D. \[{\mathbb{R}^ * }\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 27
A.Hàm số đồng biến trên khoảng \[\left( { - \ln \sqrt 2 ; + \infty } \right)\]
B.Hàm số đồng biến trên khoảng \[\left( { - \infty ; - \ln 2} \right)\]
C.Hàm số đồng biến trên khoảng \[\left( { - \infty ; - \ln \sqrt 2 } \right)\]
D.Hàm số đồng biến trên khoảng \[\left( { - \ln 2; + \infty } \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 28
A.\[m > - 8.\]
B. \[m \ge - 1.\]
C. \[m \le - 8.\]
D. \[m < - 1.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.