Câu hỏi:
27/06/2022 189Cho hàm số \[f(x) = {(3 - \sqrt 2 )^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}}\]. Xét các khẳng định sau:
Khẳng định 1: \[f(x) > 0 \Leftrightarrow {x^3} + {x^2} > 0\]
Khẳng định 2: \[f(x) > 0 \Leftrightarrow x > - 1\]
Khẳng định 3: \[f(x) < 3 - \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\]
Khẳng định 4:\[f(x) < 3 + \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - {x^2}}} + 7\]
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Cơ số\[3 - \sqrt 2 > 1\]
Ta có
\[f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} > - {x^2} \Leftrightarrow {x^3} + {x^2} > 0\]
suy ra khẳng định 1 đúng.
Ta có
\[f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} > - {x^2} \Leftrightarrow {x^3} + {x^2} > 0\]
\[ \Leftrightarrow {x^2}(x + 1) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > - 1}\\{x \ne 0}\end{array}} \right.\] suy ra khẳng định 2 sai.
Ta có
\[\begin{array}{l}f(x) < 3 - \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}} - {(3 - \sqrt 2 )^{ - {x^2}}} < 3 - \sqrt 2 \\ \Leftrightarrow \frac{{{{(3 - \sqrt 2 )}^{{x^3}}}}}{{3 - \sqrt 2 }} - \frac{{{{(3 - \sqrt 2 )}^{ - {x^2}}}}}{{3 - \sqrt 2 }} < 1\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {(3 - \sqrt 2 )^{ - {x^2} - 1}}\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{1}{{3 - \sqrt 2 }}} \right)^{{x^2} + 1}}\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\end{array}\]
suy ra khẳng định 3 đúng.
Ta có
\[\begin{array}{l}f(x) < 3 + \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}} - {(3 - \sqrt 2 )^{ - x2}}^{} < 3 + \sqrt 2 \\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}}(3 - \sqrt 2 ) - {(3 - \sqrt 2 )^{ - x2}}(3 - \sqrt 2 ) < (3 + \sqrt 2 )(3 - \sqrt 2 )\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - x2}} + 7\end{array}\]
Suy ra khẳng định 4 đúng.
Vậy có 3 khẳng định đúng.
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:
Câu 3:
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!