Cho hàm số \[f(x) = {(3 - \sqrt 2 )^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}}\]. Xét các khẳng định sau:
Khẳng định 1: \[f(x) > 0 \Leftrightarrow {x^3} + {x^2} > 0\]
Khẳng định 2: \[f(x) > 0 \Leftrightarrow x > - 1\]
Khẳng định 3: \[f(x) < 3 - \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\]
Khẳng định 4:\[f(x) < 3 + \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - {x^2}}} + 7\]
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
A.4
B.3
C.1
D.2
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hàm số mũ !!
Quảng cáo
Trả lời:

Cơ số\[3 - \sqrt 2 > 1\]
Ta có
\[f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} > - {x^2} \Leftrightarrow {x^3} + {x^2} > 0\]
suy ra khẳng định 1 đúng.
Ta có
\[f\left( x \right) > 0 \Leftrightarrow {\left( {3 - \sqrt 2 } \right)^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}} > 0 \Leftrightarrow {x^3} > - {x^2} \Leftrightarrow {x^3} + {x^2} > 0\]
\[ \Leftrightarrow {x^2}(x + 1) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > - 1}\\{x \ne 0}\end{array}} \right.\] suy ra khẳng định 2 sai.
Ta có
\[\begin{array}{l}f(x) < 3 - \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}} - {(3 - \sqrt 2 )^{ - {x^2}}} < 3 - \sqrt 2 \\ \Leftrightarrow \frac{{{{(3 - \sqrt 2 )}^{{x^3}}}}}{{3 - \sqrt 2 }} - \frac{{{{(3 - \sqrt 2 )}^{ - {x^2}}}}}{{3 - \sqrt 2 }} < 1\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {(3 - \sqrt 2 )^{ - {x^2} - 1}}\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{1}{{3 - \sqrt 2 }}} \right)^{{x^2} + 1}}\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\end{array}\]
suy ra khẳng định 3 đúng.
Ta có
\[\begin{array}{l}f(x) < 3 + \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}} - {(3 - \sqrt 2 )^{ - x2}}^{} < 3 + \sqrt 2 \\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3}}}(3 - \sqrt 2 ) - {(3 - \sqrt 2 )^{ - x2}}(3 - \sqrt 2 ) < (3 + \sqrt 2 )(3 - \sqrt 2 )\\ \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - x2}} + 7\end{array}\]
Suy ra khẳng định 4 đúng.
Vậy có 3 khẳng định đúng.
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[{I^2} + 3I = 2\]
B. \[{I^3} + {I^2} - 2 = 0\]
C. \[\frac{{I - 1}}{{I + 1}} = 1\]
D. \[3I - 2 = 2{I^2}\]
Lời giải
Ta có:\[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{3x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)}}{x}\]
\[ = \mathop {\lim }\limits_{x \to 0} \left[ {3.\frac{{{e^{3x}} - 1}}{{3x}} - 2.\frac{{{e^{2x}} - 1}}{{2x}}} \right] = 3.1 - 2.1 = 1\]
Do đó, thay I=1 vào các đáp án ta được đáp án B.
Đáp án cần chọn là: B
Câu 2
A.\[y' = y\ln 3 - {\ln ^2}3\]
B. \[y'.\ln 3 = y + \ln 3\]
C. \[y' = y - {\ln ^2}3\]
D. \[y' = y - \ln 3\]
Lời giải
Ta có:\[y = {3^x} + \ln 3 \Rightarrow y' = {3^x}\ln 3\]
Lại có:\[y = {3^x} + \ln 3 \Rightarrow {3^x} = y - \ln 3 \Rightarrow y' = \left( {y - \ln 3} \right)\ln 3 = y\ln 3 - {\ln ^2}3\]
Đáp án cần chọn là: A
Câu 3
A.\[y = {\left( {\frac{3}{\pi }} \right)^{ - x}}\]
B. \[y = {\left( {1,5} \right)^x}\]
C. \[y = {\left( {\frac{2}{e}} \right)^x}\]
D. \[y = {\left( {\sqrt 3 + 1} \right)^x}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.Hàm số đồng biến trên khoảng \[\left( { - \ln \sqrt 2 ; + \infty } \right)\]
B.Hàm số đồng biến trên khoảng \[\left( { - \infty ; - \ln 2} \right)\]
C.Hàm số đồng biến trên khoảng \[\left( { - \infty ; - \ln \sqrt 2 } \right)\]
D.Hàm số đồng biến trên khoảng \[\left( { - \ln 2; + \infty } \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[b = \frac{a}{2}.\]
B. \[b = 2a.\]
C. \[b = {a^{ - 2}}\]
D. \[b = {a^2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.0<a<b<1
B.0<b<1<a
C.0<a<1<b
D.0<b<a<1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[f\left( x \right) < 1 \Leftrightarrow x + {x^2}{\log _2}7 < 0\]
B. \[f\left( x \right) < 1 \Leftrightarrow x\ln 2 + {x^2}\ln 7 < 0\]
C. \[f\left( x \right) < 1 \Leftrightarrow x{\log _7}2 + {x^2} < 0\]
D. \[f\left( x \right) < 1 \Leftrightarrow 1 + x{\log _2}7 < 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.