Câu hỏi:

27/06/2022 660

Cho hàm số \[y = {e^{2x}} - x\]Chọn khẳng định đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

TXĐ: \[D = \mathbb{R}\]

Ta có:\[y' = 2{e^{2x}} - 1 = 0 \Leftrightarrow {e^{2x}} = \frac{1}{2}\]

\[ \Leftrightarrow 2x = \ln \frac{1}{2} = - \ln 2 \Leftrightarrow x = - \frac{1}{2}\ln 2 = - \ln \sqrt 2 \]

BBT:

Cho hàm số y = e^2x − x  Chọn khẳng định đúng. (ảnh 1)

Dựa vào BBT ta thấy hàm số đồng biến trên \[\left( { - \ln \sqrt 2 ; + \infty } \right)\]Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có:\[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{3x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)}}{x}\]

\[ = \mathop {\lim }\limits_{x \to 0} \left[ {3.\frac{{{e^{3x}} - 1}}{{3x}} - 2.\frac{{{e^{2x}} - 1}}{{2x}}} \right] = 3.1 - 2.1 = 1\]

Do đó, thay I=1 vào các đáp án ta được đáp án B.

Đáp án cần chọn là: B

Câu 2

Lời giải

Ta có:\[y = {3^x} + \ln 3 \Rightarrow y' = {3^x}\ln 3\]

Lại có:\[y = {3^x} + \ln 3 \Rightarrow {3^x} = y - \ln 3 \Rightarrow y' = \left( {y - \ln 3} \right)\ln 3 = y\ln 3 - {\ln ^2}3\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP