ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hàm số lũy thừa
640 người thi tuần này 4.6 1.6 K lượt thi 21 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[y = \frac{1}{{{x^4}}}\]
B. \[y = {x^{ - \sqrt 2 }}\]
C. \[y = {e^x}\]
D. \[y = {x^\pi }\]
Lời giải
Đáp án cần chọn là: C
Câu 2
A.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
B.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
C.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R \setminus \left\{ 0 \right\}\] với mọi \[\alpha \in R\].
D.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = \left( {0; + \infty } \right)\] với mọi \[\alpha \] không nguyên.
Lời giải
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R\] với mọi \[\alpha \] nguyên dương nên A và B sai.
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R \setminus \left\{ 0 \right\}\] với mọi \[\alpha \] nguyên âm hoặc \[\alpha = 0\] nên C sai.
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = \left( {0; + \infty } \right)\] với mọi \[\alpha \] không nguyên nên D đúng.
Đáp án cần chọn là: D
Câu 3
A.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu x>0.
B.Với n \[n \in {N^ * }\]thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu \[x \ge 0\].
C.Với \[n \in {N^ * }\] thì n \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu x<0.
0.D.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu \[x \ne 0\].
Lời giải
Vì hàm số \[y = {x^{\frac{1}{n}}}\] có số mũ không nguyên nên cơ số phải dương, hay x>0.
Đáp án cần chọn là: A
Câu 4
A.\[y' = \alpha {x^{\alpha - 1}}\]
B. \[y' = \left( {\alpha - 1} \right){x^{\alpha - 1}}\]
C. \[y' = \alpha {x^\alpha }\]
D. \[y' = \alpha {x^\alpha } - 1\]
Lời giải
Ta có: \[{\left( {{x^\alpha }} \right)^\prime } = \alpha {x^{\alpha - 1}}\]
Đáp án cần chọn là: A
Câu 5
A.x<0
B.x>0
C.\[x \ge 0\]
D.\[x \in R\]
Lời giải
Vì\[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu x>0 nên\[{\left( {\sqrt[n]{x}} \right)^\prime } = ({x^{\frac{1}{n}}})' = \frac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \frac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\] chỉ đúng nếu x>0.
Đáp án cần chọn là: B
Câu 6
A.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] đồng biến trên \[\left( {0; + \infty } \right)\]nếu \[\alpha < 0\].
>B.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] nghịch biến trên \[\left( {0; + \infty } \right)\] nếu \[\alpha < 0\].
>C.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] đồng biến trên \[\left( {0; + \infty } \right)\] nếu \[\alpha \ne 0\].
D.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] nghịch biến trên \[\left( {0; + \infty } \right)\] nếu \[0 < \alpha < 1\].
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.đường thẳng
B.đường tròn
C.đường elip
D.đường cong
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[\alpha = 0\]
B. \[\alpha = 1\]
C. \[\alpha > 1\]
D. \[0 < \alpha < 1\]
</>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.Đồ thị hàm số luôn đi qua điểm M(1;1)
B.Hàm số luôn đồng biến trên \[\left( {0; + \infty } \right)\;\]
C.Tập xác định của hàm số là \[D = \left( {0; + \infty } \right)\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]
D.Đồ thị hàm số nhận Ox,Oy làm hai tiệm cận
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[D = R \setminus \left\{ 2 \right\}\]
B. \[D = R\]
C. \[D = \left[ {3; + \infty } \right)\]
D. \[D = \left( {3; + \infty } \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.\[D = R \setminus \left\{ { \pm 2} \right\}\]
B. \[D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\]
C. \[D = \left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right)\]
D. \[D = R\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[P = {x^2}\]
B. \[P = \sqrt x \]
C. \[P = {x^{\frac{1}{3}}}\]
D. \[P = {x^{\frac{1}{{18}}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[P = 2016\]
B. \[P = 1009\]
C. \[P = 2018\]
D. \[P = {2018^2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với \[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
B. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
C. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với\[x \in R\]
D. \[y' = \frac{{3\left( {4x + 1} \right)}}{{2\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[f'\left( 0 \right) = - \frac{2}{{3\sqrt[3]{2}}}\]
B. \[f'\left( 2 \right) = \frac{{10}}{{3\sqrt[3]{4}}}\]
C. \[f'\left( { - 3} \right) = - \frac{{10}}{{3\sqrt[3]{4}}}\]
D. \[f'\left( 3 \right) = \frac{{14}}{{3\sqrt[3]{{10}}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
A.c<b<a<0
</b<a<0 >
B.0<c<b<a<1
</c<b<a<1
C.1<c<b<a
</c<b<a
D.0<a<b<c<1
</a<b<c<1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
A.\[y'' + 2y = 0\]
B. \[y'' - 6{y^2} = 0\]
C. \[2y'' - 3y = 0\]
D. \[{\left( {y''} \right)^2} - 4y = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
A.\[y = {x^{ - \frac{1}{2}}}\]
B. \[y = {x^{ - \frac{4}{3}}}\]
C. \[y = {x^{ - 2}}\]
d. \[y = {x^{\frac{1}{3}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
A.\[y = \frac{\pi }{2}x + 1\]
B. \[y = \frac{\pi }{2}x - \frac{\pi }{2} + 1\]
C. \[y = \pi x - \pi + 1\]
D. \[y = - \frac{\pi }{2}x + \frac{\pi }{2} + 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.