ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình logarit

43 người thi tuần này 4.6 777 lượt thi 35 câu hỏi 45 phút

🔥 Đề thi HOT:

1570 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

5.3 K lượt thi 235 câu hỏi
1190 người thi tuần này

Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)

9.7 K lượt thi 150 câu hỏi
603 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai

11 K lượt thi 50 câu hỏi
302 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)

1.1 K lượt thi 235 câu hỏi
209 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)

1.2 K lượt thi 150 câu hỏi
199 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)

814 lượt thi 236 câu hỏi
181 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)

683 lượt thi 235 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án

Câu 2:

Giải bất phương trình \[{\log _2}\left( {3x - 1} \right) \ge 3\]

Xem đáp án

Câu 3:

Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]

Xem đáp án

Câu 5:

Tìm tập nghiệm S của bất phương trình \[{\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right)\]

Xem đáp án

Câu 7:

Tập nghiệm của bất phương trình \[\ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\] là:

Xem đáp án

Câu 8:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

Xem đáp án

Câu 9:

Tập nghiệm của bất phương trình \[({2^{{x^2} - 4}} - 1).\ln {x^2} < 0\]là:

Xem đáp án

Câu 11:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án

Câu 12:

Nghiệm của bất phương trình \[{\log _2}(x + 1) + {\log _{\frac{1}{2}}}\sqrt {x + 1} \le 0\] là :

Xem đáp án

Câu 13:

Giải bất phương trình \[{\log _{0,7}}\left( {{{\log }_6}\frac{{{x^2} + x}}{{x + 4}}} \right) < 0\]

Xem đáp án

Câu 14:

Tìm tập hợp nghiệm S của bất phương trình: \[lo{g_{\frac{\pi }{4}}}({x^2} + 1) < lo{g_{\frac{\pi }{4}}}(2x + 4)\]

Xem đáp án

Câu 16:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

Xem đáp án

Câu 18:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án

Câu 19:

Giải bất phương trình: \[\log _2^2x - 4033{\log _2}x + 4066272 \le 0\]

Xem đáp án

Câu 21:

Tập nghiệm của bất phương trình \[2017{\log _2}x \le {4^{{{\log }_2}9}}\]là

Xem đáp án

Câu 25:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Xem đáp án

Câu 29:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án

Câu 31:

Tập nghiệm của bất phương trình \[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x}\] là:

Xem đáp án

4.6

155 Đánh giá

50%

40%

0%

0%

0%