Câu hỏi:

28/06/2022 215

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: x>0.

Ta có:

\[\begin{array}{*{20}{l}}{{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {9^{{{\log }_9}x.{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {{\left( {{9^{{{\log }_9}x}}} \right)}^{{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {x^{{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow 2.{x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {x^{{{\log }_9}x}} \le 9}\end{array}\]

Lấy logarit cơ số 9 cả 2 vế bất phương trình ta được:

\[\begin{array}{*{20}{l}}{{{\log }_9}\left( {{x^{{{\log }_9}x}}} \right) \le {{\log }_9}9}\\{ \Leftrightarrow {{\log }_9}x.{{\log }_9}x \le 1}\\{ \Leftrightarrow \log _9^2x \le 1}\\{ \Leftrightarrow - 1 \le {{\log }_9}x \le 1}\\{ \Leftrightarrow \frac{1}{9} \le x \le 9}\end{array}\]

Kết hợp điều kiện xác định ta có\[x \in \left[ {\frac{1}{9};9} \right]\]

Vậy tập nghiệm của bất phương trình là: \[S = \left[ {\frac{1}{9};9} \right]\]Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án » 13/07/2024 4,665

Câu 2:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

Xem đáp án » 28/06/2022 2,033

Câu 3:

Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?

Xem đáp án » 13/07/2024 1,110

Câu 4:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án » 28/06/2022 1,024

Câu 5:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án » 28/06/2022 958

Câu 6:

Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình

\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng  x=1x=1 là một nghiệm của bất phương trình.

Xem đáp án » 28/06/2022 628

Câu 7:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án » 28/06/2022 605

Bình luận


Bình luận