Câu hỏi:

28/06/2022 473

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐK:\[{x^2} + 6x + 5 + m > 0.\]

\[\begin{array}{*{20}{l}}{{{\log }_7}\left( {{x^2} + 2x + 2} \right) + 1 > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow {{\log }_7}7\left( {{x^2} + 2x + 2} \right) > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m}\\{ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0}\\{ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0}\end{array}\]

Bất phương trình đã cho có tập nghiệm chứa (1;3)

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} + 6x + 5 + m > 0,\forall x \in (1;3)}\\{6{x^2} + 8x + 9 - m > 0,\forall x \in (1;3)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - {x^2} - 6x - 5,\forall x \in (1;3)}\\{m < 6{x^2} + 8x + 9,\forall x \in (1;3)}\end{array}} \right.\left( * \right)\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge \mathop {max}\limits_{[1;3]} f(x)}\\{m \le \mathop {min}\limits_{[1;3]} g(x)}\end{array}} \right.\end{array}\)

với\[f\left( x \right) = - {x^2} - 6x - 5\] và\[g\left( x \right) = 6{x^2} + 8x + 9\]

Ta có:\[f'\left( x \right) = - 2x - 6 = 0 \Leftrightarrow x = - 3 \notin \left( {1;3} \right)\] và\[f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = f\left( x \right)\] nghịch biến trên \[\left( {1;3} \right)\]

\[ \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = - 12 \Rightarrow m \ge - 12\]

\[g'\left( x \right) = 12x + 8 = 0 \Leftrightarrow x = - \frac{2}{3} \notin \left( {1;3} \right)\] và \[g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = g\left( x \right)\] đồng biến trên (1;3)

\[ \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23 \Rightarrow m \le 23\]

Vậy\[ - 12 \le m \le 23\]

Mà\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\] hay có\[23 - \left( { - 12} \right) + 1 = 36\] giá trị.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bước 1: Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] và tìm điều kiện xác định.

Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] (coi yy là tham số).

Điều kiện xác định của f(x) là:

\(\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 0}\\{{y^2} + y + 64 > 0}\\{x - y > 0}\end{array}} \right.\)

Do x,y nguyên nên\[x > y \ge - {y^2}\] Cũng vì x,y nguyên nên ta chỉ xét f(x) trên nửa khoảng \[\left[ {y + 1; + \infty } \right)\]

Bước 2: Xét hàm số trên\[\left[ {y + 1; + \infty } \right)\]

Ta có:

\[f'\left( x \right) = \frac{1}{{\left( {x + {y^2}} \right)\ln 2020}} - \frac{1}{{\left( {x - y} \right)\ln 2021}} - \frac{1}{{\left( {x - y} \right)\ln 4}} < 0,\;\forall x \ge y + 1\]

Bước 3: Lập bảng biến thiên

Ta có bảng biến thiên của hàm số f(x):

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện (ảnh 1)

Bước 4: Tìm y nguyên \[f\left( {y + 64} \right) < 0\]

Yêu cầu bài toán trở thành:

\[f\left( {y + 64} \right) < 0\]

\[ \Leftrightarrow {\log _{2020}}\left( {{y^2} + y + 64} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) < {\log _4}64\]

\[ \Leftrightarrow {\log _{2021}}\left( {{y^2} + y + 64} \right)\left( {{{\log }_{2020}}2021 + 1} \right) < 3\]

\[ \Leftrightarrow {y^2} + y + 64 - {2021^{\frac{3}{{{{\log }_{2020}}2021 + 1}}}} < 0\]

\[ \Leftrightarrow - 301,76 < y < 300,76\]

Mà y nguyên nên\[y \in \left\{ { - 301; - 300; \ldots ;299;300} \right\}\]

Vậy có 602 giá trị nguyên của yy thỏa mãn yêu cầu.

Lời giải

Gọi số tiền đóng hàng năm là A=12 (triệu đồng), lãi suất là\[r = 6{\rm{\% }} = 0,06\]

Sau 1 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là\[{A_1} = A\left( {1 + r} \right)\] (nhưng người đó không rút mà lại đóng thêm A triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là\[{A_1} + A\])

Sau 2 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_2} = \left( {{A_1} + A} \right)\left( {1 + r} \right) = \left[ {A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Sau 3 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[\begin{array}{l}{A_3} = \left( {{A_2} + A} \right)\left( {1 + r} \right) = \left[ {A{{\left( {1 + r} \right)}^2} + A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right)\\ = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\end{array}\]

Sau 18 năm, người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_{18}} = A{\left( {1 + r} \right)^{18}} + A{\left( {1 + r} \right)^{17}} + ... + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Tính:\[{A_{18}} = A\left[ {{{\left( {1 + r} \right)}^{18}} + {{\left( {1 + r} \right)}^{17}} + ... + {{\left( {1 + r} \right)}^2} + \left( {1 + r} \right) + 1 - 1} \right]\]

\[ \Rightarrow {A_{18}} = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{{\left( {1 + r} \right) - 1}} - 1} \right] = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{r} - 1} \right] = 12\left[ {\frac{{{{\left( {1 + 0,06} \right)}^{19}} - 1}}{{0,06}} - 1} \right] \approx 393,12\]

Đáp án cần chọn là: D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP