Câu hỏi:

28/06/2022 197

Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\] bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Tìm điều kiện và tìm mối quan hệ giữa a và b từ đẳng thức bài cho.

ĐKXĐ:\(\left\{ {\begin{array}{*{20}{c}}{b - a > 0}\\{a,b > 0}\end{array}} \right.\)

Ta có:

\[\begin{array}{*{20}{l}}{{{\log }_3}\left( {1 + ab} \right) = \frac{1}{2} + {{\log }_3}\left( {b - a} \right)}\\{ \Leftrightarrow {{\log }_3}\left( {1 + ab} \right) - {{\log }_3}\left( {b - a} \right) = \frac{1}{2}}\\{ \Leftrightarrow {{\log }_3}\frac{{1 + ab}}{{b - a}} = \frac{1}{2}}\\{ \Leftrightarrow \frac{{1 + ab}}{{b - a}} = \sqrt 3 }\\{ \Leftrightarrow 1 + ab = \sqrt 3 \left( {b - a} \right)}\\{ \Leftrightarrow \frac{1}{a} + b = \sqrt 3 \left( {\frac{b}{a} - 1} \right)}\end{array}\]

Bước 2: Sử dụng BĐT Cô-si để đánh giá\[\frac{a}{b}\]

Áp dụng BĐT Cô-si ta có\[\frac{1}{a} + b \ge 2\sqrt {\frac{b}{a}} \] nên\[\sqrt 3 \left( {\frac{b}{a} - 1} \right) \ge 2\sqrt {\frac{b}{a}} \Leftrightarrow \sqrt 3 \frac{b}{a} - 2\sqrt {\frac{b}{a}} - \sqrt 3 \ge 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sqrt {\frac{b}{a}} \ge \sqrt 3 }\\{\sqrt {\frac{b}{a}} \le - \frac{1}{{\sqrt 3 }}(Loai)}\end{array}} \right. \Leftrightarrow \sqrt {\frac{b}{a}} \ge \sqrt 3 \Leftrightarrow \frac{b}{a} \ge 3\)

Bước 3: Sử dụng BĐT Cô-si để đánh giá P.

Ta có: \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}} = \frac{{1 + {a^2} + {b^2} + {a^2}{b^2}}}{{a\left( {a + b} \right)}}\]

Áp dụng BĐT Cô-si ta có \[1 + {a^2}{b^2} \ge 2\sqrt {{a^2}{b^2}} = 2ab\] nên

\[1 + {a^2} + {b^2} + {a^2}{b^2} \ge {a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}\]

\[ \Rightarrow P = \frac{{1 + {a^2} + {b^2} + {a^2}{b^2}}}{{a\left( {a + b} \right)}} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{a\left( {a + b} \right)}} = \frac{{a + b}}{a} = 1 + \frac{b}{a} \ge 4\]

Vậy

\[{P_{min}} = 4 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{1}{a} = b}\\{\frac{b}{a} = 3}\\{a,b > 0,b - a > 0}\end{array}} \right.\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{1}{a} = 3a}\\{b = 3a}\\{a,b > 0,b - a > 0}\\{}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{{\sqrt 3 }}}\\{b = \sqrt 3 }\end{array}} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bước 1: Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] và tìm điều kiện xác định.

Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] (coi yy là tham số).

Điều kiện xác định của f(x) là:

\(\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 0}\\{{y^2} + y + 64 > 0}\\{x - y > 0}\end{array}} \right.\)

Do x,y nguyên nên\[x > y \ge - {y^2}\] Cũng vì x,y nguyên nên ta chỉ xét f(x) trên nửa khoảng \[\left[ {y + 1; + \infty } \right)\]

Bước 2: Xét hàm số trên\[\left[ {y + 1; + \infty } \right)\]

Ta có:

\[f'\left( x \right) = \frac{1}{{\left( {x + {y^2}} \right)\ln 2020}} - \frac{1}{{\left( {x - y} \right)\ln 2021}} - \frac{1}{{\left( {x - y} \right)\ln 4}} < 0,\;\forall x \ge y + 1\]

Bước 3: Lập bảng biến thiên

Ta có bảng biến thiên của hàm số f(x):

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện (ảnh 1)

Bước 4: Tìm y nguyên \[f\left( {y + 64} \right) < 0\]

Yêu cầu bài toán trở thành:

\[f\left( {y + 64} \right) < 0\]

\[ \Leftrightarrow {\log _{2020}}\left( {{y^2} + y + 64} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) < {\log _4}64\]

\[ \Leftrightarrow {\log _{2021}}\left( {{y^2} + y + 64} \right)\left( {{{\log }_{2020}}2021 + 1} \right) < 3\]

\[ \Leftrightarrow {y^2} + y + 64 - {2021^{\frac{3}{{{{\log }_{2020}}2021 + 1}}}} < 0\]

\[ \Leftrightarrow - 301,76 < y < 300,76\]

Mà y nguyên nên\[y \in \left\{ { - 301; - 300; \ldots ;299;300} \right\}\]

Vậy có 602 giá trị nguyên của yy thỏa mãn yêu cầu.

Lời giải

Gọi số tiền đóng hàng năm là A=12 (triệu đồng), lãi suất là\[r = 6{\rm{\% }} = 0,06\]

Sau 1 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là\[{A_1} = A\left( {1 + r} \right)\] (nhưng người đó không rút mà lại đóng thêm A triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là\[{A_1} + A\])

Sau 2 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_2} = \left( {{A_1} + A} \right)\left( {1 + r} \right) = \left[ {A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Sau 3 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[\begin{array}{l}{A_3} = \left( {{A_2} + A} \right)\left( {1 + r} \right) = \left[ {A{{\left( {1 + r} \right)}^2} + A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right)\\ = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\end{array}\]

Sau 18 năm, người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_{18}} = A{\left( {1 + r} \right)^{18}} + A{\left( {1 + r} \right)^{17}} + ... + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Tính:\[{A_{18}} = A\left[ {{{\left( {1 + r} \right)}^{18}} + {{\left( {1 + r} \right)}^{17}} + ... + {{\left( {1 + r} \right)}^2} + \left( {1 + r} \right) + 1 - 1} \right]\]

\[ \Rightarrow {A_{18}} = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{{\left( {1 + r} \right) - 1}} - 1} \right] = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{r} - 1} \right] = 12\left[ {\frac{{{{\left( {1 + 0,06} \right)}^{19}} - 1}}{{0,06}} - 1} \right] \approx 393,12\]

Đáp án cần chọn là: D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP