Câu hỏi:
28/06/2022 191Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ĐKXĐ: \[ - x > 0 \Leftrightarrow x < 0\]
Ta có: \[f\left( x \right) < \ln \left( { - x} \right) + m \Leftrightarrow m > f\left( x \right) - \ln \left( { - x} \right)\left( * \right)\]</>
Xét hàm số \[g\left( x \right) = f\left( x \right) - \ln \left( { - x} \right)\] trên khoảng \[\left( { - 1; - \frac{1}{e}} \right)\] có:
\[\,g'\left( x \right) = f'\left( x \right) - \frac{{ - 1}}{{ - x}} = f'\left( x \right) - \frac{1}{x}\]
Ta biểu diễn đồ thị hàm số\[y = \frac{1}{x}\] (nét màu đỏ) trên hình vẽ như sau:
Quan sát đồ thị hàm số ta thấy
\[\,g'\left( x \right) = f'\left( x \right) - \frac{1}{x} > 0,\,\,\forall x \in \left( { - 1; - \frac{1}{e}} \right) \Rightarrow \] Hàm số\[y = g\left( x \right)\] đồng biến trên\[\left( { - 1; - \frac{1}{e}} \right)\]
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{g( - 1) = f( - 1) - ln(1) = 1}\\{g( - \frac{1}{e}) = f( - \frac{1}{e}) - ln\frac{1}{e} = 2 + 1 = 3}\end{array}} \right.\)
Để (*) nghiệm đúng với mọi\[x \in \left( { - 1; - \frac{1}{e}} \right)\] thì \[ \Leftrightarrow m \ge \mathop {max}\limits_{\left[ { - 1; - \frac{1}{e}} \right]} g\left( x \right) \Leftrightarrow m \ge 3.\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]
Câu 2:
Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Câu 3:
Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]
Câu 4:
Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?
Câu 5:
Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:
Câu 6:
Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình
\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng x=1x=1 là một nghiệm của bất phương trình.
Câu 7:
Bất phương trình \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?
về câu hỏi!