Câu hỏi:

28/06/2022 224

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

Đáp án chính xác
Câu hỏi trong đề:   Bất phương trình logarit !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 2x + 1 > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(x - 1)}^2} > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow x > 1\)

\[{\log _{\frac{1}{3}}}({x^2} - 2x + 1) < {\log _{\frac{1}{3}}}(x - 1) \Leftrightarrow {x^2} - 2x + 1 > x - 1 > 0\]</>

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 2 > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(x - 1)(x - 2) > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow x > 2\)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án » 13/07/2024 4,252

Câu 2:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

Xem đáp án » 28/06/2022 1,619

Câu 3:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án » 28/06/2022 893

Câu 4:

Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?

Xem đáp án » 13/07/2024 890

Câu 5:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án » 28/06/2022 845

Câu 6:

Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình

\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng  x=1x=1 là một nghiệm của bất phương trình.

Xem đáp án » 28/06/2022 577

Câu 7:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án » 28/06/2022 557

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL