Câu hỏi:
28/06/2022 172Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị f′(x) như hình vẽ bên. Bất phương trình \[{\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\] đúng với mọi \[x \in \left( { - 1;4} \right)\;\] khi và chỉ khi
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ĐK : \[f\left( x \right) + m + 2 > 0\]
Ta có\[{\log _5}\left( {f\left( x \right) + m + 2} \right) + f\left( x \right) > 4 - m\]
\[ \Leftrightarrow {\log _5}\left( {f\left( x \right) + m + 2} \right) + f\left( x \right) + m + 2 > 6\left( * \right)\]
Xét hàm số \[y = {\log _5}t + t\,\,\,\left( {t > 0} \right)\] có\[y' = \frac{1}{{t.\ln 5}} + 1 > 0\] với t>0
Nên hàm số\[y = {\log _5}t + t\] đồng biến trên\[\left( {0; + \infty } \right)\] lại có\[y\left( 5 \right) = {\log _5}5 + 5 = 6\]
Nên từ (*) suy ra
\[y\left( {f\left( x \right) + m + 2} \right) > y\left( 5 \right) \Leftrightarrow f\left( x \right) + m + 2 > 5 \Leftrightarrow f\left( x \right) > 3 - m\] (1)
Từ hình vẽ ta có BBT của hàm số f(x) như sau
Từ hình vẽ ta có\[\mathop \smallint \limits_{ - 1}^1 \left| {f'\left( x \right)} \right|dx < \mathop \smallint \limits_1^4 \left| {f'\left( x \right)} \right|dx \Leftrightarrow \mathop \smallint \limits_{ - 1}^1 f'\left( x \right)dx < - \mathop \smallint \limits_1^4 f'\left( x \right)dx\]
\[ \Leftrightarrow f(x)|_{ - 1}^1 < - f(x)|_1^4 \Leftrightarrow f(1) - f( - 1) < f(1) - f(4)\,\,\,\,\;\left( 2 \right)\]
Từ (1) ; (2) và BBT ta thấy để phương trình đã cho đúng với \[x \in \left( { - 1;4} \right)\] suy ra\[3 - m \le f\left( 4 \right) \Leftrightarrow m \ge 3 - f\left( 4 \right).\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]
Câu 2:
Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Câu 3:
Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?
Câu 4:
Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]
Câu 5:
Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:
Câu 6:
Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình
\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng x=1x=1 là một nghiệm của bất phương trình.
Câu 7:
Bất phương trình \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!