Câu hỏi:

27/06/2022 216 Lưu

Cho hàm số \[y = f\left( x \right) = {\left( {{x^2} + x - 2} \right)^{\frac{2}{3}}}\]. Chọn khẳng định sai:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

TXĐ: \[D = \left( { - \infty ; - 2} \right) \cup \left( {1; + \infty } \right)\]

Ta có:

\[y' = f'\left( x \right) = {\left[ {{{\left( {{x^2} + x - 2} \right)}^{\frac{2}{3}}}} \right]^\prime } = \frac{2}{3}{\left( {{x^2} + x - 2} \right)^{ - \frac{1}{3}}}{\left( {{x^2} + x - 2} \right)^\prime }\]

\[ = \frac{2}{3}{\left( {{x^2} + x - 2} \right)^{ - \frac{1}{3}}}\left( {2x + 1} \right) = \frac{{2\left( {2x + 1} \right)}}{{3\sqrt[3]{{{x^2} + x - 2}}}},\forall x \in D\]

Do đó:

\[f'\left( 2 \right) = \frac{{10}}{{3\sqrt[3]{4}}};f'\left( { - 3} \right) = - \frac{{10}}{{3\sqrt[3]{4}}};f'\left( 3 \right) = \frac{{14}}{{3\sqrt[3]{{10}}}}\] và không tồn tại \[f'\left( 0 \right)\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì\[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu x>0 nên\[{\left( {\sqrt[n]{x}} \right)^\prime } = ({x^{\frac{1}{n}}})' = \frac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \frac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\] chỉ đúng nếu x>0.

Đáp án cần chọn là: B

Câu 2

Lời giải

Ta có: \[{\left( {{x^\alpha }} \right)^\prime } = \alpha {x^{\alpha - 1}}\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP