Câu hỏi:

27/06/2022 187

Cho hàm số \[f\left( x \right) = \frac{1}{{3 + {2^x}}} + \frac{1}{{3 + {2^{ - x}}}}\]. Trong các khẳng định, có bao nhiêu khẳng định đúng?

1) \[f\prime (x) \ne 0,\forall x \in R\]

2) \[f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) = 2017\]

3) \[f({x^2}) = \frac{1}{{3 + {4^x}}} + \frac{1}{{3 + {4^{ - x}}}}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[f'\left( x \right) = \frac{{ - {2^x}\ln 2}}{{{{\left( {3 + {2^x}} \right)}^2}}} + \frac{{{2^{ - x}}\ln 2}}{{{{\left( {3 + {2^{ - x}}} \right)}^2}}} \Rightarrow f'\left( 0 \right) = 0\] nên khẳng định (1) sai.

\[f\left( x \right) = \frac{{{2^x} + {2^{ - x}} + 6}}{{\left( {3 + {2^x}} \right)\left( {3 + {2^{ - x}}} \right)}} = \frac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{2^x} + {2^{ - x}}} \right) + 10}}\]

Đặt \[t = {2^x} + {2^{ - x}} \ge 2\sqrt {{2^x}{{.2}^{ - x}}} = 2\] thì\[\frac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{3^x} + {2^{ - x}}} \right) + 10}} = \frac{{t + 6}}{{3t + 10}}\]

Xét\[g\left( t \right) = \frac{{t + 6}}{{3t + 10}},g'\left( t \right) = - \frac{8}{{{{\left( {3t + 10} \right)}^2}}} < 0\] nên hàm số nghịch biến trên\[\left[ {2; + \infty } \right)\]

\[ \Rightarrow g\left( t \right) \le g\left( 2 \right) = \frac{{2 + 6}}{{3.2 + 10}} = \frac{1}{2} < 1\] hay\[f\left( x \right) < 1,\forall x\]

Suy ra\[f\left( 1 \right) < 1,f\left( 2 \right) < 1,...,f\left( {2017} \right) < 1\]

\[ \Rightarrow f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) < 2017\] nên (2) sai.

\[f\left( {{x^2}} \right) = \frac{1}{{3 + {2^{{x^2}}}}} + \frac{1}{{3 + {2^{ - {x^2}}}}} \ne \frac{1}{{3 + {4^x}}} + \frac{1}{{3 + {4^{ - x}}}}\] (chẳng hạn x=1) nên (3) sai.

Do đó không có khẳng định nào đúng.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có:\[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{3x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)}}{x}\]

\[ = \mathop {\lim }\limits_{x \to 0} \left[ {3.\frac{{{e^{3x}} - 1}}{{3x}} - 2.\frac{{{e^{2x}} - 1}}{{2x}}} \right] = 3.1 - 2.1 = 1\]

Do đó, thay I=1 vào các đáp án ta được đáp án B.

Đáp án cần chọn là: B

Câu 2

Lời giải

Ta có:\[y = {3^x} + \ln 3 \Rightarrow y' = {3^x}\ln 3\]

Lại có:\[y = {3^x} + \ln 3 \Rightarrow {3^x} = y - \ln 3 \Rightarrow y' = \left( {y - \ln 3} \right)\ln 3 = y\ln 3 - {\ln ^2}3\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP