Câu hỏi:

27/06/2022 107

Cho hàm số \[f\left( x \right) = \frac{1}{{3 + {2^x}}} + \frac{1}{{3 + {2^{ - x}}}}\]. Trong các khẳng định, có bao nhiêu khẳng định đúng?

1) \[f\prime (x) \ne 0,\forall x \in R\]

2) \[f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) = 2017\]

3) \[f({x^2}) = \frac{1}{{3 + {4^x}}} + \frac{1}{{3 + {4^{ - x}}}}\]

Đáp án chính xác
Câu hỏi trong đề:   Hàm số mũ !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[f'\left( x \right) = \frac{{ - {2^x}\ln 2}}{{{{\left( {3 + {2^x}} \right)}^2}}} + \frac{{{2^{ - x}}\ln 2}}{{{{\left( {3 + {2^{ - x}}} \right)}^2}}} \Rightarrow f'\left( 0 \right) = 0\] nên khẳng định (1) sai.

\[f\left( x \right) = \frac{{{2^x} + {2^{ - x}} + 6}}{{\left( {3 + {2^x}} \right)\left( {3 + {2^{ - x}}} \right)}} = \frac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{2^x} + {2^{ - x}}} \right) + 10}}\]

Đặt \[t = {2^x} + {2^{ - x}} \ge 2\sqrt {{2^x}{{.2}^{ - x}}} = 2\] thì\[\frac{{{2^x} + {2^{ - x}} + 6}}{{3\left( {{3^x} + {2^{ - x}}} \right) + 10}} = \frac{{t + 6}}{{3t + 10}}\]

Xét\[g\left( t \right) = \frac{{t + 6}}{{3t + 10}},g'\left( t \right) = - \frac{8}{{{{\left( {3t + 10} \right)}^2}}} < 0\] nên hàm số nghịch biến trên\[\left[ {2; + \infty } \right)\]

\[ \Rightarrow g\left( t \right) \le g\left( 2 \right) = \frac{{2 + 6}}{{3.2 + 10}} = \frac{1}{2} < 1\] hay\[f\left( x \right) < 1,\forall x\]

Suy ra\[f\left( 1 \right) < 1,f\left( 2 \right) < 1,...,f\left( {2017} \right) < 1\]

\[ \Rightarrow f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) < 2017\] nên (2) sai.

\[f\left( {{x^2}} \right) = \frac{1}{{3 + {2^{{x^2}}}}} + \frac{1}{{3 + {2^{ - {x^2}}}}} \ne \frac{1}{{3 + {4^x}}} + \frac{1}{{3 + {4^{ - x}}}}\] (chẳng hạn x=1) nên (3) sai.

Do đó không có khẳng định nào đúng.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:

Xem đáp án » 27/06/2022 1,056

Câu 2:

Cho hàm số \[y = {3^x} + \ln 3\]. Chọn mệnh đề đúng:

Xem đáp án » 27/06/2022 751

Câu 3:

Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 27/06/2022 566

Câu 4:

Cho hàm số \[y = {e^{2x}} - x\]Chọn khẳng định đúng.

Xem đáp án » 27/06/2022 448

Câu 5:

Tập xác định của hàm số \[y = {2^x}\] là:

Xem đáp án » 27/06/2022 382

Câu 6:

Hàm số \[y = {a^x}(0 < a \ne 1)\] đồng biến khi nào?

Xem đáp án » 27/06/2022 353

Câu 7:

Chọn khẳng định đúng:

Xem đáp án » 27/06/2022 337

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn