Quảng cáo
Trả lời:
\[\smallint \cot xdx = \smallint \frac{{\cos x}}{{\sin x}}dx\]
Đặt \[t = \sin x \Rightarrow dt = \cos xdx\]
Khi đó ta có:
\[\begin{array}{*{20}{l}}{\smallint \cot xdx = \smallint \frac{{\cos x}}{{\sin x}}dx = \smallint \frac{{dt}}{t} = \ln \left| t \right| + C}\\{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \ln \left| {\sin x} \right| + C}\end{array}\]
Đáp án cần chọn là: B
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt\[x = \frac{1}{{\sin t}} \Leftrightarrow {\rm{d}}x = {\left( {\frac{1}{{\sin t}}} \right)^\prime }{\rm{d}}t \Leftrightarrow {\rm{d}}x = - \frac{{\cos t}}{{{{\sin }^2}t}}{\rm{d}}t\]
Và\[\frac{{\sqrt {{x^2} - 1} }}{{{x^3}}} = {\sin ^3}t.\sqrt {\frac{1}{{{{\sin }^2}t}} - 1} = {\sin ^3}t.\sqrt {\frac{{1 - {{\sin }^2}t}}{{{{\sin }^2}t}}} = {\sin ^3}t.\frac{{\cos t}}{{\sin t}} = {\sin ^2}t.\cos t.\]
Khi đó
\[I = \smallint {\sin ^2}t.\cos t.\left( { - \frac{{\cos t}}{{{{\sin }^2}t}}} \right){\rm{d}}t = - \,\smallint {\cos ^2}t\,{\rm{d}}t = - \frac{1}{2}\smallint \left( {1 + \cos 2t} \right){\rm{d}}t.\]
Đáp án cần chọn là: A
Lời giải
\[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\]
Đặt
\[u = \sqrt {3\tan x + 1} \Rightarrow {u^2} = 3\tan x + 1 \Rightarrow \frac{3}{{{{\cos }^2}x}}dx = 2udu \Rightarrow \frac{{dx}}{{{{\cos }^2}x}} = \frac{{2udu}}{3}\]
\[I = \smallint \frac{{2\left( {{u^2} - 1} \right)}}{{3u}}2udu = \frac{4}{3}\smallint \left( {{u^2} - 1} \right)du\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.