Câu hỏi:

28/06/2022 119

Cho \[F\left( x \right) = \smallint \frac{x}{{1 + \sqrt {1 + x} }}dx\]và \[F\left( 3 \right) - F\left( 0 \right) = \frac{a}{b}\] là phân số tối giản , a>0. Tổng a+b bằng ?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[F\left( x \right) = \smallint \frac{x}{{1 + \sqrt {1 + x} }}dx\]

Đặt\[\sqrt {1 + x} = t \Rightarrow 1 + x = {t^2} \Rightarrow x = {t^2} - 1 \Rightarrow dx = 2tdt\]

\[\begin{array}{*{20}{l}}{ \Rightarrow F\left( x \right) = \smallint \frac{{{t^2} - 1}}{{1 + t}}.2tdt = 2\smallint t\left( {t - 1} \right)dt = 2\smallint \left( {{t^2} - t} \right)dt}\\{ = \frac{2}{3}{t^3} - {t^2} + C = \frac{2}{3}\left( {1 + x} \right)\sqrt {1 + x} - \left( {1 + x} \right) + C}\\{ \Rightarrow F\left( 3 \right) - F\left( 0 \right) = \frac{2}{3}\left( {1 + 3} \right)\sqrt {1 + 3} - \left( {1 + 3} \right) - \frac{2}{3}\left( {1 + 0} \right)\sqrt {1 + 0} + \left( {1 + 0} \right) = \frac{5}{3}}\\{ \Rightarrow a = 5,b = 3 \Rightarrow a + b = 8}\end{array}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì

Xem đáp án » 28/06/2022 416

Câu 2:

Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:

Xem đáp án » 28/06/2022 391

Câu 3:

Nguyên hàm của hàm số \[y = \cot x\] là:

Xem đáp án » 28/06/2022 379

Câu 4:

Nếu \[t = {x^2}\] thì:

Xem đáp án » 28/06/2022 335

Câu 5:

Tính \[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx\]

Xem đáp án » 28/06/2022 293

Câu 6:

Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là

Xem đáp án » 28/06/2022 281

Câu 7:

Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.

Xem đáp án » 28/06/2022 272

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn