Câu hỏi:

28/06/2022 236

Gọi F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}\sin x + 2x\cos x}}{{x\sin x + \cos x}}\]. Biết \[F\left( 0 \right) = 1,\] Tính giá trị biểu thức \[F\left( {\frac{\pi }{2}} \right).\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[f\left( x \right) = \frac{{{x^2}\sin x + x\cos x + x\cos x}}{{x\sin x + \cos x}} = x + \frac{{x\cos x}}{{x\sin x + \cos x}}\]

Khi đó

\[\smallint f\left( x \right){\rm{d}}x = \smallint \left( {x + \frac{{x\cos x}}{{x\sin x + \cos x}}} \right){\rm{d}}x = \smallint x{\rm{d}}x + \smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x.\]

Đặt

\[t = x\sin x + \cos x \Leftrightarrow {\rm{d}}t = {\left( {x\sin x + \cos x} \right)^\prime }{\rm{d}}x = \left( {\sin x + x\cos x - \sin x} \right)dx = x\cos x\,{\rm{d}}x.\]

Suy ra

\[\smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x = \smallint \frac{{{\rm{d}}t}}{t} = \ln \left| t \right| + C = \ln \left| {x\sin x + \cos x} \right| + C.\]

Do đó

\[\begin{array}{*{20}{l}}{F\left( x \right) = \smallint f\left( x \right){\rm{d}}x = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + C.}\\{ \Rightarrow F\left( 0 \right) = C = 1 \Rightarrow F\left( x \right) = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + 1.}\\{ \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{8} + \ln \frac{\pi }{2} + 1.}\end{array}\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì

Xem đáp án » 28/06/2022 554

Câu 2:

Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:

Xem đáp án » 28/06/2022 497

Câu 3:

Nguyên hàm của hàm số \[y = \cot x\] là:

Xem đáp án » 28/06/2022 467

Câu 4:

Tính \[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx\]

Xem đáp án » 28/06/2022 439

Câu 5:

Nếu \[t = {x^2}\] thì:

Xem đáp án » 28/06/2022 420

Câu 6:

Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là

Xem đáp án » 28/06/2022 387

Câu 7:

Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.

Xem đáp án » 28/06/2022 354
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay