Câu hỏi:
28/06/2022 236Gọi F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}\sin x + 2x\cos x}}{{x\sin x + \cos x}}\]. Biết \[F\left( 0 \right) = 1,\] Tính giá trị biểu thức \[F\left( {\frac{\pi }{2}} \right).\]
Quảng cáo
Trả lời:
Ta có \[f\left( x \right) = \frac{{{x^2}\sin x + x\cos x + x\cos x}}{{x\sin x + \cos x}} = x + \frac{{x\cos x}}{{x\sin x + \cos x}}\]
Khi đó
\[\smallint f\left( x \right){\rm{d}}x = \smallint \left( {x + \frac{{x\cos x}}{{x\sin x + \cos x}}} \right){\rm{d}}x = \smallint x{\rm{d}}x + \smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x.\]
Đặt
\[t = x\sin x + \cos x \Leftrightarrow {\rm{d}}t = {\left( {x\sin x + \cos x} \right)^\prime }{\rm{d}}x = \left( {\sin x + x\cos x - \sin x} \right)dx = x\cos x\,{\rm{d}}x.\]
Suy ra
\[\smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x = \smallint \frac{{{\rm{d}}t}}{t} = \ln \left| t \right| + C = \ln \left| {x\sin x + \cos x} \right| + C.\]
Do đó
\[\begin{array}{*{20}{l}}{F\left( x \right) = \smallint f\left( x \right){\rm{d}}x = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + C.}\\{ \Rightarrow F\left( 0 \right) = C = 1 \Rightarrow F\left( x \right) = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + 1.}\\{ \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{8} + \ln \frac{\pi }{2} + 1.}\end{array}\]
Đáp án cần chọn là: DĐã bán 902
Đã bán 1,4k
Đã bán 851
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì
Câu 2:
Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:
Câu 6:
Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là
Câu 7:
Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận