Câu hỏi:

30/06/2022 230

Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng \[(P):2x + 2y - z - 3 = 0\]và mặt cầu \[(S):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\]. Gọi \[\Delta \] là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \[\Delta \] là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dễ thấy \[E \in \left( P \right)\]. Gọi I(3;2;5) là tâm khối cầu.

Đường thẳng qua I vuông góc với (P): \(\left\{ {\begin{array}{*{20}{c}}{x = 3 + 2t}\\{y = 2 + 2t}\\{z = 5 - t}\end{array}} \right.\left( d \right)\)

Gọi H là hình chiếu của I lên (P)\[ \Rightarrow H \in \left( d \right) \Rightarrow H\left( {3 + 2t;2 + 2t;5 - t} \right)\]

Lại có\[H \in \left( P \right)\]

\[\begin{array}{*{20}{l}}{ \Rightarrow 2\left( {3 + 2t} \right) + 2\left( {2 + 2t} \right) - 5 + t - 3 = 0}\\{ \Leftrightarrow 6 + 4t + 4 + 4t - 5 + t - 3 = 0}\\{ \Leftrightarrow 9t + 2 = 0 \Leftrightarrow t = \frac{{ - 2}}{9} \Rightarrow H\left( {\frac{{23}}{9};\frac{{14}}{9};\frac{{47}}{9}} \right)}\\{ \Rightarrow \overrightarrow {EH} \left( {\frac{5}{9};\frac{5}{9};\frac{{20}}{9}} \right) = \frac{5}{9}\left( {1;\;1;\;4} \right)//\left( {1;1;4} \right) = \vec a}\end{array}\]

Để đường thẳng \[\left( {\rm{\Delta }} \right)\]cắt mặt cầu (S) tại 2 điểm sao cho chúng có khoảng cách nhỏ nhất thì đường thẳng \[\left( {\rm{\Delta }} \right)\]đi qua E và vuông góc với HE.

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {{u_\Delta }} \bot \overrightarrow {{n_P}} }\\{\overrightarrow {{u_\Delta }} \bot \overrightarrow a }\end{array}} \right. \Rightarrow \overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{n_P}} ;\overrightarrow a } \right]\)

\( = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\1&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&2\\4&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&2\\1&1\end{array}} \right|} \right) = (9; - 9;0) = 9(1; - 1;0)\)

Vậy đường thẳng \[\left( {\rm{\Delta }} \right)\]đi qua E và nhận (1;−1;0) là 1 VTCP.

Vậy phương trình đường thẳng\(\left( \Delta \right):\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 - t}\\{z = 3}\end{array}} \right.\)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.

Xem đáp án » 30/06/2022 4,869

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\;\]. Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \)và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.

Xem đáp án » 30/06/2022 3,547

Câu 3:

Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình  mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].

Xem đáp án » 30/06/2022 3,477

Câu 4:

Trong không gian với hệ tọa độ  Oxyz,  cho mặt cầu (S) có phương trình

\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.

Xem đáp án » 30/06/2022 2,994

Câu 5:

Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:

Xem đáp án » 30/06/2022 1,018

Câu 6:

Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0)  và cắt trục Oy tại hai điểm A,B mà AB=8 là

Xem đáp án » 30/06/2022 679

Câu 7:

Trong không gian với hệ tọa độ  Oxyz, cho mặt cầu (S) có phương trình \[{(x + 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]. Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua trục Oz.

Xem đáp án » 30/06/2022 408

Bình luận


Bình luận