Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{1} = \frac{{z + 1}}{2}\], điểm A(2;−1;1). Gọi I là hình chiếu vuông góc của A lên d. Viết phương trình mặt cầu (C) có tâm I và đi qua A.
A.\[{x^2} + {(y - 3)^2} + {(z - 1)^2} = 20\]
B. \[{x^2} + {(y + 1)^2} + {(z + 2)^2} = 5\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z + 3)^2} = 20\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 14\]
Quảng cáo
Trả lời:

Phương trình mặt phẳng (P) qua A , vuông góc (d) là:
\[ - 1.\left( {x - 2} \right) + 1.\left( {y + 1} \right) + 2.\left( {z - 1} \right) = 0 \Leftrightarrow - x + y + 2z + 1 = 0\]
Gọi \[I\left( {1 - t;2 + t; - 1 + 2t} \right) = d \cap \left( P \right)\] khi đó:
\[ - \left( {1 - t} \right) + \left( {2 + t} \right) + 2\left( { - 1 + 2t} \right) + 1 = 0 \Leftrightarrow t = 0 \Rightarrow I\left( {1;2; - 1} \right)\]
Có\[I{A^2} = 14\] Phương trình mặt cầu là:
\[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 14\]
Đáp án cần chọn là: D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
B. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 4.\]
C. \[\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 2} \right)^2} = 20.\]
D. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 5.\]
Lời giải
Khoảng cách từ tâm I đến trục Oz là: \[d\left( {I;\left( {Oz} \right)} \right) = \sqrt {{3^2} + {4^2}} = 5.\]
Vì tiếp xúc với trục Oz nên bán kính mặt cầu R=5.
Vậy phương trình cần tìm là
\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
Đáp án cần chọn là: A
Câu 2
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2.\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9.\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4.\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24.\]
Lời giải
\[\overrightarrow {{u_d}} = (1;2;1)\] Lấy điểm\[M(1;0;2) \in d\]
\[\begin{array}{*{20}{l}}{\overrightarrow {MI} = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\vec u} \right] = ( - 2;2; - 2)}\\{R = d(I,d) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 }\end{array}\]
Vậy phương trình mặt cầu tâm I(2;0;1) bán kính \(\sqrt 2 \) là:
\[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]
Đáp án cần chọn là: A
Câu 3
A.I(1;−2;2),I(5;2;10)
B.I(1;−2;2),I(0;3;0)
C.I(5;2;10),I(0;−3;0)
D.I(1;−2;2),I(−1;2;−2)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]
B. Trục Ox
C.TrụcOy
D.Trục Oz
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 9\]
B. \[{(x + 3)^2} + {(y - 2)^2} + {z^2} = 25\]
C. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 64\]
D. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 25\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[{x^2} + {y^2} + {z^2} + 4x - 8y + 2z + 2 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + x - 2y + z + 1 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 4y + 4z + 4 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[{(x - 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
B. \[{(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
C. \[{(x + 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.