Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−y−2z+1=0 và ba điểmA(1;−2;0), B(1;0;−1) và C(0;0;−2). Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng (P) và tiếp xúc với ba đường thẳng AB,AC,BC?
A.4 mặt cầu
B.2 mặt cầu.
C.1 mặt cầu.
D.Vô số mặt cầu
Quảng cáo
Trả lời:

Ta có:
\[\overrightarrow {AB} = \left( {0;2; - 1} \right)\]
\[\overrightarrow {AC} = \left( { - 1;2; - 2} \right)\]
\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 2;1;2} \right)\]
Mặt phẳng (ABC) có vecto pháp tuyến là\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 2;1;2} \right)\]Suy ra\[(P)//(ABC)\]
Trên mặt phẳng (ABC) có 4 điểm M,N,P,Q cách đều AB,BC,AC là tâm đường tròn nội tiếp, 3 tâm đường tròn bàng tiếp các góc A,B,C do đó có 4 điểm M′,N′,P′,Q′ trên mặt phẳng (P) là hình chiếu vuông góc của M,N,P,Q trên (P) thỏa mãn tính chất cách đều AB,BC,AC.
Tương ứng có 4 mặt cầu tâm M′,N′,P′,Q′ thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
B. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 4.\]
C. \[\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 2} \right)^2} = 20.\]
D. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 5.\]
Lời giải
Khoảng cách từ tâm I đến trục Oz là: \[d\left( {I;\left( {Oz} \right)} \right) = \sqrt {{3^2} + {4^2}} = 5.\]
Vì tiếp xúc với trục Oz nên bán kính mặt cầu R=5.
Vậy phương trình cần tìm là
\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
Đáp án cần chọn là: A
Câu 2
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2.\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9.\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4.\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24.\]
Lời giải
\[\overrightarrow {{u_d}} = (1;2;1)\] Lấy điểm\[M(1;0;2) \in d\]
\[\begin{array}{*{20}{l}}{\overrightarrow {MI} = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\vec u} \right] = ( - 2;2; - 2)}\\{R = d(I,d) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 }\end{array}\]
Vậy phương trình mặt cầu tâm I(2;0;1) bán kính \(\sqrt 2 \) là:
\[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]
Đáp án cần chọn là: A
Câu 3
A.I(1;−2;2),I(5;2;10)
B.I(1;−2;2),I(0;3;0)
C.I(5;2;10),I(0;−3;0)
D.I(1;−2;2),I(−1;2;−2)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]
B. Trục Ox
C.TrụcOy
D.Trục Oz
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 9\]
B. \[{(x + 3)^2} + {(y - 2)^2} + {z^2} = 25\]
C. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 64\]
D. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 25\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[{x^2} + {y^2} + {z^2} + 4x - 8y + 2z + 2 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + x - 2y + z + 1 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 4y + 4z + 4 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[{(x - 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
B. \[{(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
C. \[{(x + 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.