Câu hỏi:
30/06/2022 240Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;−2;3) và đường thẳng d có phương trình \[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]. Tính đường kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình mặt cầu (S) có dạng\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = {R^2}\]
Phương trình tham số của d là:\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = 2 + t}\\{z = - 3 - t}\end{array}} \right.\)
Tọa độ giao điểm của (S) và d là nghiệm của hệ
\(\left\{ {\begin{array}{*{20}{c}}{{{(x - 1)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {R^2}}\\{x = - 1 + 2t}\\{y = 2 + t}\\{z = - 3 - t}\end{array}\left( * \right)} \right.\)
(S) tiếp xúc với dd khi và chỉ khi (∗) có nghiệm kép
\[ \Leftrightarrow {( - 2 + 2t)^2} + {(4 + t)^2} + {( - 6 - t)^2} = {R^2}\] có nghiệm kép
\[ \Leftrightarrow 6{t^2} + 12t + 56 - {R^2} = 0\] có nghiệm kép
\[ \Leftrightarrow {\rm{\Delta '}} = {\left( { - 6} \right)^2} - 6.(56 - {R^2}) = 0 \Leftrightarrow 6{R^2} - 300 = 0 \Leftrightarrow {R^2} = 50 \Leftrightarrow R = 5\sqrt 2 \]
Suy ra đường kính của mặt cầu (S) là\[10\sqrt 2 \]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\;\]. Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \)và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình
\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.
Câu 4:
Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].
Câu 5:
Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:
Câu 6:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0) và cắt trục Oy tại hai điểm A,B mà AB=8 là
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:
về câu hỏi!