Câu hỏi:

30/06/2022 227

Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]. Điểm M thuộc mặt cầu (S) sao cho tổng \[3M{A^2} + 2M{B^2} + M{C^2}\;\] đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \[\overrightarrow {OM} \;\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu  (ảnh 1)

+) Mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]có tâm J(1;1;1), bán kính R=1.

+) Tìm I: \[3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} = \vec 0 \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + \overrightarrow {AC} = \vec 0 \Leftrightarrow \overrightarrow {IA} = - \frac{{2\overrightarrow {AB} + \overrightarrow {AC} }}{6}\]

\[A\left( {0;1;1} \right),B\left( {3;0; - 1} \right),C\left( {0;21; - 19} \right)\]

\[ \Rightarrow \overrightarrow {IA} \left( { - {x_I};1 - {y_I};1 - {z_I}} \right),\overrightarrow {AB} \left( {3; - 1; - 2} \right),\overrightarrow {AC} \left( {0;20; - 20} \right)\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{ - {x_I} = - \frac{{2.3 + 0}}{6}}\\{1 - {y_I} = - \frac{{2.( - 1) + 20}}{6}}\\{1 - {z_I} = - \frac{{2.( - 2) + ( - 20)}}{6}}\end{array}} \right. \Rightarrow I(1;4; - 3)\)

+) Ta có:

\[\begin{array}{*{20}{l}}{3M{A^2} + 2M{B^2} + M{C^2}}\\{ = 3{{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)}^2} + 2{{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)}^2} + {{\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)}^2}}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2}}\\{ + 2.\overrightarrow {MI} .\left( {3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} } \right)}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2} + 2.\overrightarrow {MI} .\vec 0}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2}}\end{array}\]

Để tổng trên là nhỏ nhất thì MI nhỏ nhất ⇒M là giao điểm của đoạn thẳng IJ và  mặt cầu (S).

\[\overrightarrow {JI} = \left( {0;3; - 4} \right)\]=> Tọa độ điểm M thuộc đoạn IJ có dạng\[\left( {1;1 + 3t;1 - 4t} \right),t \in \left[ {0;1} \right]\]

Mặt khác\[M \in \left( S \right) \Rightarrow {\left( {1 - 1} \right)^2} + {\left( {1 - \left( {1 + 3t} \right)} \right)^2} + {\left( {1 - \left( {1 - 4t} \right)} \right)^2} = 1\]

\[ \Leftrightarrow {t^2} = \frac{1}{{25}} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{1}{5}}\\{t = - \frac{1}{5}\left( L \right)}\end{array}} \right. \Rightarrow t = \frac{1}{5} \Rightarrow M\left( {1;\frac{8}{5};\frac{1}{5}} \right) \Rightarrow OM = \frac{{3\sqrt {10} }}{5}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ tâm I đến trục Oz là: \[d\left( {I;\left( {Oz} \right)} \right) = \sqrt {{3^2} + {4^2}} = 5.\]

Vì  tiếp xúc với trục Oz nên bán kính mặt cầu R=5.

Vậy phương trình cần tìm là 

\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]

Đáp án cần chọn là: A

Câu 2

Lời giải

\[\overrightarrow {{u_d}} = (1;2;1)\] Lấy điểm\[M(1;0;2) \in d\]

\[\begin{array}{*{20}{l}}{\overrightarrow {MI} = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\vec u} \right] = ( - 2;2; - 2)}\\{R = d(I,d) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 }\end{array}\]

Vậy phương trình mặt cầu tâm I(2;0;1) bán kính \(\sqrt 2 \) là:

\[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP