Câu hỏi:
30/06/2022 338Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = t}\\{z = t}\end{array}} \right.\)và \(d':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 3 - t'}\\{z = 0}\end{array}} \right.\). Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là:
Quảng cáo
Trả lời:
Lấy\[{\rm{A}} \in {\rm{d}} \Rightarrow {\rm{A}}\left( {2a;a;4} \right)\] và\[B \in d' \Rightarrow B\left( {b;3 - b;0} \right)\].
Ta có:\[\overrightarrow {AB} = \left( {b - 2a;3 - a - b; - 4} \right)\]
AB là đoạn vuông góc chung của hai đường thẳng d và d′ khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {{u_d}} = 0}\\{\overrightarrow {AB} .\overrightarrow {{u_{d'}}} = 0}\end{array}} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2.(b - 2a) + 1.(3 - a - b) + 0.( - 4) = 0}\\{1.(b - 2a) - 1.(3 - a - b) + 0.( - 4) = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5a + b + 3 = 0}\\{ - a + 2b - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\end{array}\)
Suy ra \[{\rm{A}}\left( {2;1;4} \right);B\left( {2;1;0} \right)\] và\[\overrightarrow {AB} = \left( {0;0; - 4} \right)\]
Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′
Có tâm I là trung điểm của AB và bán kính\[R = \frac{{AB}}{2}\]
Ta có I(2;1;2) và \[R = \frac{{AB}}{2} = \frac{4}{2} = 2\]
Vậy ta có\[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khoảng cách từ tâm I đến trục Oz là: \[d\left( {I;\left( {Oz} \right)} \right) = \sqrt {{3^2} + {4^2}} = 5.\]
Vì tiếp xúc với trục Oz nên bán kính mặt cầu R=5.
Vậy phương trình cần tìm là
\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
Đáp án cần chọn là: A
Lời giải
\[\overrightarrow {{u_d}} = (1;2;1)\] Lấy điểm\[M(1;0;2) \in d\]
\[\begin{array}{*{20}{l}}{\overrightarrow {MI} = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\vec u} \right] = ( - 2;2; - 2)}\\{R = d(I,d) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 }\end{array}\]
Vậy phương trình mặt cầu tâm I(2;0;1) bán kính \(\sqrt 2 \) là:
\[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.