Câu hỏi:
30/06/2022 106Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = t}\\{z = t}\end{array}} \right.\)và \(d':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 3 - t'}\\{z = 0}\end{array}} \right.\). Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lấy\[{\rm{A}} \in {\rm{d}} \Rightarrow {\rm{A}}\left( {2a;a;4} \right)\] và\[B \in d' \Rightarrow B\left( {b;3 - b;0} \right)\].
Ta có:\[\overrightarrow {AB} = \left( {b - 2a;3 - a - b; - 4} \right)\]
AB là đoạn vuông góc chung của hai đường thẳng d và d′ khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {{u_d}} = 0}\\{\overrightarrow {AB} .\overrightarrow {{u_{d'}}} = 0}\end{array}} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2.(b - 2a) + 1.(3 - a - b) + 0.( - 4) = 0}\\{1.(b - 2a) - 1.(3 - a - b) + 0.( - 4) = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5a + b + 3 = 0}\\{ - a + 2b - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\end{array}\)
Suy ra \[{\rm{A}}\left( {2;1;4} \right);B\left( {2;1;0} \right)\] và\[\overrightarrow {AB} = \left( {0;0; - 4} \right)\]
Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′
Có tâm I là trung điểm của AB và bán kính\[R = \frac{{AB}}{2}\]
Ta có I(2;1;2) và \[R = \frac{{AB}}{2} = \frac{4}{2} = 2\]
Vậy ta có\[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\;\]. Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \)và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình
\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.
Câu 4:
Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].
Câu 5:
Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:
Câu 6:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0) và cắt trục Oy tại hai điểm A,B mà AB=8 là
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:
về câu hỏi!