Câu hỏi:

30/06/2022 173

Trong không gian với hệ tọa độ  Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 9\] và đường thẳng \[d:x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\].  (d) cắt  (S) tại hai điểm phân biệt A và B. Khi đó AB bằng: 

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tham số hóa phương trình đường thẳng d ta được: d:\(\left\{ {\begin{array}{*{20}{c}}{x = t + 1}\\{y = 2 + 2t}\\{z = 4 + 3t}\end{array}} \right.\)

Giả sử A là giao điểm của (d) và (P).

Vì \[A \in d:\left\{ {\begin{array}{*{20}{c}}{x = t + 1}\\{y = 2 + 2t}\\{z = 4 + 3t}\end{array}} \right.\]  nên ta có:\[A\left( {t + 1;2 + 2t;4 + 3t} \right)\]

Mặt khác\[A \in (S)\]  nên ta có

\[{(t + 1 - 1)^2} + {(2 + 2t + 2)^2} + {(4 + 3t - 3)^2} = 9\]

\[ \Leftrightarrow {t^2} + {(4 + 2t)^2} + {(1 + 3t)^2} = 9\]

\[ \Leftrightarrow 14{t^2} + 22t + 8 = 0\]

\(\begin{array}{l} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = - \frac{4}{7}}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{A(0;0;1)}\\{B\left( {\frac{3}{7};\frac{6}{7};\frac{{16}}{7}} \right)}\end{array}} \right.\\ \Rightarrow AB = \sqrt {{{\left( {\frac{3}{7}} \right)}^2} + {{\left( {\frac{6}{7}} \right)}^2} + {{\left( {\frac{{16}}{7} - 1} \right)}^2}} = \frac{{\sqrt {126} }}{7}\end{array}\)

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.

Xem đáp án » 30/06/2022 7,202

Câu 2:

Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình  mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].

Xem đáp án » 30/06/2022 6,377

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\;\]. Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \)và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.

Xem đáp án » 30/06/2022 4,495

Câu 4:

Trong không gian với hệ tọa độ  Oxyz,  cho mặt cầu (S) có phương trình

\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.

Xem đáp án » 30/06/2022 3,790

Câu 5:

Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0)  và cắt trục Oy tại hai điểm A,B mà AB=8 là

Xem đáp án » 30/06/2022 1,824

Câu 6:

Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:

Xem đáp án » 30/06/2022 1,647

Câu 7:

Trong không gian với hệ tọa độ  Oxyz, cho mặt cầu (S) có phương trình \[{(x + 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]. Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua trục Oz.

Xem đáp án » 30/06/2022 834
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua