Câu hỏi:
13/07/2024 2,632Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1: Sử dụng hàm đặc trưng.
Ta có
\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,{{11}^x} + m = {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = x - m + {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = {{11}^{{{\log }_{11}}\left( {x - m} \right)}} + {{\log }_{11}}\left( {x - m} \right)\,\,\left( * \right)}\end{array}\]
Xét hàm số\[f\left( t \right) = {11^t} + t \Rightarrow y' = {11^t}.\ln 11 + 1 > 0\,\,\,\forall t\] Khi đó hàm số\[y = f\left( t \right)\] đồng biến trên\(\mathbb{R}\)
Do đó\[\left( * \right) \Leftrightarrow x = {\log _{11}}\left( {x - m} \right) \Leftrightarrow {11^x} = x - m \Leftrightarrow m = x - {11^x}\]
Bước 2: Khảo sát hàm số\[g(x) = x - {11^x}\]
Xét hàm số \[g\left( x \right) = x - {11^x}\] ta có
\[g'\left( x \right) = 1 - {11^x}.\ln 11 = 0 \Rightarrow x = {\log _{11}}\frac{1}{{\ln 11}} = {x_0}\]
Bảng biến thiên:
Bước 3: Biện luận nghiệm theo m.
Để phương trình đã cho có nghiệm thì\[m < g\left( {{x_0}} \right) \approx - 0,78\]
Kết hợp điều kiện đề bài ta có\(\left\{ {\begin{array}{*{20}{c}}{ - 205 < m \le - 1}\\{m \in \mathbb{Z}}\end{array}} \right.\)
Vậy có 204 giá trị của nguyên của m thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Câu 2:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Câu 3:
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Câu 4:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]
Câu 5:
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
về câu hỏi!