Câu hỏi:

27/06/2022 298

Cho các số thực dương a,b,c  khác 1 thỏa mãn 

Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[\begin{array}{l}\log _a^2b + \log _b^2c + 2{\log _b}\frac{c}{b} = {\log _a}\frac{c}{{{a^3}b}}\\ \Leftrightarrow \log _a^2b + \log _b^2c + 2{\log _b}c - 2 = {\log _a}c - {\log _a}\left( {{a^3}b} \right)\\ \Leftrightarrow \log _a^2b + \log _b^2c + 2{\log _b}c - 2 = {\log _a}c - 3 - {\log _a}b\\ \Leftrightarrow \log _a^2b + \log _b^2c = {\log _a}b.{\log _b}c - 2{\log _b}c - {\log _a}b - 1\left( 1 \right)\end{array}\]

Đặt \[x = {\log _a}b,\,\,y = {\log _b}c\]  khi đó ta có:

\[\begin{array}{*{20}{l}}{P = {{\log }_a}ab - {{\log }_b}bc}\\{P = 1 + {{\log }_a}b - 1 - {{\log }_b}c}\\{P = x - y \Rightarrow y = x - P}\end{array}\]Thay x,y vào (1) ta có:

\[\begin{array}{*{20}{l}}{{x^2} + {y^2} = xy - 2y - x - 1}\\{ \Leftrightarrow {x^2} + {{\left( {x - P} \right)}^2} = x\left( {x - P} \right) - 2\left( {x - P} \right) - x - 1}\\{ \Leftrightarrow {x^2} + {x^2} - 2Px + {P^2} = {x^2} - Px - 2x + 2P - x - 1}\\{ \Leftrightarrow {x^2} - \left( {P - 3} \right)x + {P^2} - 2P + 1 = 0\,\,\left( 2 \right)}\end{array}\]

Để tồn tại các số a,b,c thỏa mãn yêu cầu bài toán thì phương trình (2) phải có nghiệm.

\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }} \ge 0}\\{ \Leftrightarrow {{\left( {P - 3} \right)}^2} - 4\left( {{P^2} - 2P + 1} \right) \ge 0}\\{ \Leftrightarrow {P^2} - 6P + 9 - 4{P^2} + 8P - 4 \ge 0}\\{ \Leftrightarrow - 3{P^2} + 2P + 5 \ge 0}\\{ \Leftrightarrow - 1 \le P \le \frac{5}{3}}\end{array}\]

Vậy\[m = - 1,\,\,M = \frac{5}{3} \Rightarrow S = 2{m^2} + 9{M^2} = 2.{\left( { - 1} \right)^2} + 9.{\left( {\frac{5}{3}} \right)^2} = 27\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?

Xem đáp án » 13/07/2024 2,631

Câu 2:

Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:

Xem đáp án » 27/06/2022 1,927

Câu 3:

Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)

Xem đáp án » 27/06/2022 1,502

Câu 4:

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]

Xem đáp án » 27/06/2022 786

Câu 5:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]

Xem đáp án » 27/06/2022 468

Câu 6:

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:

Xem đáp án » 27/06/2022 394

Câu 7:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án » 27/06/2022 338

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL