Câu hỏi:

27/06/2022 470

Cho các số thực dương a,b,c  khác 1 thỏa mãn 

Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[\begin{array}{l}\log _a^2b + \log _b^2c + 2{\log _b}\frac{c}{b} = {\log _a}\frac{c}{{{a^3}b}}\\ \Leftrightarrow \log _a^2b + \log _b^2c + 2{\log _b}c - 2 = {\log _a}c - {\log _a}\left( {{a^3}b} \right)\\ \Leftrightarrow \log _a^2b + \log _b^2c + 2{\log _b}c - 2 = {\log _a}c - 3 - {\log _a}b\\ \Leftrightarrow \log _a^2b + \log _b^2c = {\log _a}b.{\log _b}c - 2{\log _b}c - {\log _a}b - 1\left( 1 \right)\end{array}\]

Đặt \[x = {\log _a}b,\,\,y = {\log _b}c\]  khi đó ta có:

\[\begin{array}{*{20}{l}}{P = {{\log }_a}ab - {{\log }_b}bc}\\{P = 1 + {{\log }_a}b - 1 - {{\log }_b}c}\\{P = x - y \Rightarrow y = x - P}\end{array}\]Thay x,y vào (1) ta có:

\[\begin{array}{*{20}{l}}{{x^2} + {y^2} = xy - 2y - x - 1}\\{ \Leftrightarrow {x^2} + {{\left( {x - P} \right)}^2} = x\left( {x - P} \right) - 2\left( {x - P} \right) - x - 1}\\{ \Leftrightarrow {x^2} + {x^2} - 2Px + {P^2} = {x^2} - Px - 2x + 2P - x - 1}\\{ \Leftrightarrow {x^2} - \left( {P - 3} \right)x + {P^2} - 2P + 1 = 0\,\,\left( 2 \right)}\end{array}\]

Để tồn tại các số a,b,c thỏa mãn yêu cầu bài toán thì phương trình (2) phải có nghiệm.

\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }} \ge 0}\\{ \Leftrightarrow {{\left( {P - 3} \right)}^2} - 4\left( {{P^2} - 2P + 1} \right) \ge 0}\\{ \Leftrightarrow {P^2} - 6P + 9 - 4{P^2} + 8P - 4 \ge 0}\\{ \Leftrightarrow - 3{P^2} + 2P + 5 \ge 0}\\{ \Leftrightarrow - 1 \le P \le \frac{5}{3}}\end{array}\]

Vậy\[m = - 1,\,\,M = \frac{5}{3} \Rightarrow S = 2{m^2} + 9{M^2} = 2.{\left( { - 1} \right)^2} + 9.{\left( {\frac{5}{3}} \right)^2} = 27\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1 \Leftrightarrow {3.2^x} - 1 = {4^{x - 1}} \Leftrightarrow {4^x} - {12.2^x} + 4 = 0\]

Đặt \[t = {2^x}\] khi đó phương trình trở thành \[{t^2} - 12t + 4 = 0\] phương trình có hai nghiệm\[{t_1},{t_2}\] thỏa mãn\[{t_1}{t_2} = 4 \Leftrightarrow {2^{{x_1}}}{.2^{{x_2}}} = 4 \Leftrightarrow {2^{{x_1} + {x_2}}} = {2^2} \Leftrightarrow {x_1} + {x_2} = 2\]

Đáp án cần chọn là: C

Lời giải

Bước 1: Sử dụng hàm đặc trưng.

Ta có

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,{{11}^x} + m = {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = x - m + {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = {{11}^{{{\log }_{11}}\left( {x - m} \right)}} + {{\log }_{11}}\left( {x - m} \right)\,\,\left( * \right)}\end{array}\]

Xét hàm số\[f\left( t \right) = {11^t} + t \Rightarrow y' = {11^t}.\ln 11 + 1 > 0\,\,\,\forall t\] Khi đó hàm số\[y = f\left( t \right)\] đồng biến trên\(\mathbb{R}\)

Do đó\[\left( * \right) \Leftrightarrow x = {\log _{11}}\left( {x - m} \right) \Leftrightarrow {11^x} = x - m \Leftrightarrow m = x - {11^x}\]

Bước 2: Khảo sát hàm số\[g(x) = x - {11^x}\]

Xét hàm số \[g\left( x \right) = x - {11^x}\] ta có

\[g'\left( x \right) = 1 - {11^x}.\ln 11 = 0 \Rightarrow x = {\log _{11}}\frac{1}{{\ln 11}} = {x_0}\]

Bảng biến thiên:

Cho phương trình 11^x + m = log 11 ( x − m )  với mm là tham số. Có bao nhiêu giá trị nguyên của  m thuộc ( − 205 ; 205 )  để phương trình đã cho có nghiệm? (ảnh 1)

Bước 3: Biện luận nghiệm theo m.

Để phương trình đã cho có nghiệm thì\[m < g\left( {{x_0}} \right) \approx - 0,78\]

Kết hợp điều kiện đề bài ta có\(\left\{ {\begin{array}{*{20}{c}}{ - 205 < m \le - 1}\\{m \in \mathbb{Z}}\end{array}} \right.\)

Vậy có 204 giá trị của nguyên của m thỏa mãn yêu cầu bài toán. 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP