Câu hỏi:
27/06/2022 152Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\]
\[ \Leftrightarrow {2^{ - 2|x - m|}}.2.lo{g_2}({x^2} - 2x + 3) - {2^{2x - {x^2}}}.lo{g_2}(2|x - m| + 2) = 0\]
\[ \Leftrightarrow {2^{ - 2|x - m| + 1}}.lo{g_2}({x^2} - 2x + 3) = {2^{2x - {x^2}}}.lo{g_2}(2|x - m| + 2)\]
\[ \Leftrightarrow {2^{{x^2} - 2x}}.lo{g_2}({x^2} - 2x + 3) = {2^{2|x - m| - 1}}.lo{g_2}(2|x - m| + 2)\]
\[ \Leftrightarrow {2^{{x^2} - 2x}} + 2.lo{g_2}({x^2} - 2x + 3) = {2^{2|x - m| + 2}}.lo{g_2}(2|x - m| + 2)\]
Xét hàm đặc trưng\[f\left( t \right) = {2^t}.{\log _2}t\,\,\left( {t \ge 2} \right)\] ta có
\[f'\left( t \right) = {2^t}.\ln 2.{\log _2}t + {2^t}.\frac{1}{{t\ln 2}} > 0\,\,\forall t \ge 2\] do đó hàm số đồng biến trên\[\left[ {2; + \infty } \right)\]
Lại có\[f\left( {{x^2} - 2x + 3} \right) = f\left( {2\left| {x - m} \right| + 2} \right)\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {x^2} - 2x + 3 = 2\left| {x - m} \right| + 2}\\{ \Leftrightarrow {x^2} - 2x + 1 = 2\left| {x - m} \right|}\\{ \Leftrightarrow {{\left( {x - 1} \right)}^2} = 2\left| {x - m} \right|\,\,\left( * \right)}\end{array}\]
Để phương trình ban đầu có 3 nghiệm phân biệt thì phương trình (*) phải có 3 nghiệm phân biệt.
Dựa vào đồ thị hàm số ta có \[m = \frac{1}{2},\,\,m = 1,\,\,m = \frac{3}{2}\] thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Câu 2:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Câu 3:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Câu 4:
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Câu 5:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]
Câu 6:
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
về câu hỏi!