Câu hỏi:
27/06/2022 212Cho x,y là các số thực dương thỏa mãn \[lo{g_2}\frac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = (x + y - 1)(2x + 2y - 1) - 4\left( {xy + 1} \right)\] Giá trị lớn nhất của biểu thức \[P = \frac{{5x + 3y - 2}}{{2x + y + 1}}\;\] bằng:
Quảng cáo
Trả lời:
\[lo{g_2}\frac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = (x + y - 1)(2x + 2y - 1) - 4\left( {xy + 1} \right)\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) - lo{g_2}({x^2} + {y^2}) = (x + y - 1)[2(x + y) - 1] - 4(xy + 1)\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) - lo{g_2}({x^2} + {y^2}) = 2{(x + y)^2} - 3(x + y) + 1 - 4(xy + 1)\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) - lo{g_2}({x^2} + {y^2}) = 2({x^2} + {y^2}) + 4xy - (3x + 3y) + 1 - 4xy - 4\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) - lo{g_2}({x^2} + {y^2}) = 2({x^2} + {y^2}) - (3x + 3y + 4) + 1\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) + (3x + 3y + 4) = lo{g_2}({x^2} + {y^2}) + 2({x^2} + {y^2}) + lo{g_2}2\]
\[ \Leftrightarrow lo{g_2}(3x + 3y + 4) + (3x + 3y + 4) = lo{g_2}(2{x^2} + 2{y^2}) + (2{x^2} + 2{y^2})( * )\]
Xét hàm số đặc trưng \[f\left( t \right) = {\log _2}t + t\,\,\left( {t > 0} \right)\] ta có
\[f'\left( t \right) = \frac{1}{{t\ln 2}} + 1 > 0\,\,\forall t > 0\]
⇒ Hàm số y=f(t) luôn đồng biến trên\[\left( {0; + \infty } \right)\]
Do đó \[\left( * \right) \Leftrightarrow 3x + 3y + 4 = 2{x^2} + 2{y^2}\]Ta có:\[{\left( {x + y} \right)^2} \le 2\left( {{x^2} + {y^2}} \right) = 3x + 3y + 4\]
\[ \Leftrightarrow {\left( {x + y} \right)^2} - 3\left( {x + y} \right) - 4 \le 0 \Leftrightarrow - 1 \le x + y \le 4\]
Kết hợp điều kiện đề bài ta có\[0 < x + y \le 4\]
Xét biểu thức
\[P = \frac{{5x + 3y - 2}}{{2x + y + 1}} = \frac{{2\left( {2x + y + 1} \right) + x + y - 4}}{{2x + y + 1}} = 2 + \frac{{x + y - 4}}{{2x + y + 1}}\]
Do \[x + y \le 4 \Leftrightarrow x + y - 4 \le 0 \Leftrightarrow \frac{{x + y - 4}}{{2x + y + 1}} \le 0 \Rightarrow P \le 2\]
Vậy\[{P_{max}} = 2 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{x = y}\end{array}} \right. \Leftrightarrow x = y = 2\]
Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1 \Leftrightarrow {3.2^x} - 1 = {4^{x - 1}} \Leftrightarrow {4^x} - {12.2^x} + 4 = 0\]
Đặt \[t = {2^x}\] khi đó phương trình trở thành \[{t^2} - 12t + 4 = 0\] phương trình có hai nghiệm\[{t_1},{t_2}\] thỏa mãn\[{t_1}{t_2} = 4 \Leftrightarrow {2^{{x_1}}}{.2^{{x_2}}} = 4 \Leftrightarrow {2^{{x_1} + {x_2}}} = {2^2} \Leftrightarrow {x_1} + {x_2} = 2\]
Đáp án cần chọn là: C
Lời giải
Bước 1: Sử dụng hàm đặc trưng.
Ta có
\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,{{11}^x} + m = {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = x - m + {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = {{11}^{{{\log }_{11}}\left( {x - m} \right)}} + {{\log }_{11}}\left( {x - m} \right)\,\,\left( * \right)}\end{array}\]
Xét hàm số\[f\left( t \right) = {11^t} + t \Rightarrow y' = {11^t}.\ln 11 + 1 > 0\,\,\,\forall t\] Khi đó hàm số\[y = f\left( t \right)\] đồng biến trên\(\mathbb{R}\)
Do đó\[\left( * \right) \Leftrightarrow x = {\log _{11}}\left( {x - m} \right) \Leftrightarrow {11^x} = x - m \Leftrightarrow m = x - {11^x}\]
Bước 2: Khảo sát hàm số\[g(x) = x - {11^x}\]
Xét hàm số \[g\left( x \right) = x - {11^x}\] ta có
\[g'\left( x \right) = 1 - {11^x}.\ln 11 = 0 \Rightarrow x = {\log _{11}}\frac{1}{{\ln 11}} = {x_0}\]
Bảng biến thiên:
Bước 3: Biện luận nghiệm theo m.
Để phương trình đã cho có nghiệm thì\[m < g\left( {{x_0}} \right) \approx - 0,78\]
Kết hợp điều kiện đề bài ta có\(\left\{ {\begin{array}{*{20}{c}}{ - 205 < m \le - 1}\\{m \in \mathbb{Z}}\end{array}} \right.\)
Vậy có 204 giá trị của nguyên của m thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.