Câu hỏi:

27/06/2022 218

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình đã cho tương đương với:

\[\begin{array}{l}lo{g_2}({2^x} - 1)[lo{g_4}2 + lo{g_4}({2^x} - 1)] = 1\\ \Leftrightarrow lo{g_2}({2^x} - 1)\left[ {\frac{1}{2} + \frac{1}{2}lo{g_2}({2^x} - 1)} \right] = 1\\ \Leftrightarrow lo{g_2}({2^x} - 1)\left[ {1 + lo{g_2}({2^x} - 1)} \right] = 2\\ \Leftrightarrow \log _2^2({2^x} - 1) + lo{g_2}({2^x} - 1) - 2 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{lo{g_2}({2^x} - 1) = 1}\\{lo{g_2}({2^x} - 1) = - 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{2^x} - 1 = 1}\\{{2^x} - 1 = \frac{1}{4}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{2^x} = 3}\\{{2^x} = \frac{5}{4}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = lo{g_2}3}\\{x = lo{g_2}\frac{5}{4}}\end{array}} \right.\end{array}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1 \Leftrightarrow {3.2^x} - 1 = {4^{x - 1}} \Leftrightarrow {4^x} - {12.2^x} + 4 = 0\]

Đặt \[t = {2^x}\] khi đó phương trình trở thành \[{t^2} - 12t + 4 = 0\] phương trình có hai nghiệm\[{t_1},{t_2}\] thỏa mãn\[{t_1}{t_2} = 4 \Leftrightarrow {2^{{x_1}}}{.2^{{x_2}}} = 4 \Leftrightarrow {2^{{x_1} + {x_2}}} = {2^2} \Leftrightarrow {x_1} + {x_2} = 2\]

Đáp án cần chọn là: C

Lời giải

Bước 1: Sử dụng hàm đặc trưng.

Ta có

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,{{11}^x} + m = {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = x - m + {{\log }_{11}}\left( {x - m} \right)}\\{ \Leftrightarrow {{11}^x} + x = {{11}^{{{\log }_{11}}\left( {x - m} \right)}} + {{\log }_{11}}\left( {x - m} \right)\,\,\left( * \right)}\end{array}\]

Xét hàm số\[f\left( t \right) = {11^t} + t \Rightarrow y' = {11^t}.\ln 11 + 1 > 0\,\,\,\forall t\] Khi đó hàm số\[y = f\left( t \right)\] đồng biến trên\(\mathbb{R}\)

Do đó\[\left( * \right) \Leftrightarrow x = {\log _{11}}\left( {x - m} \right) \Leftrightarrow {11^x} = x - m \Leftrightarrow m = x - {11^x}\]

Bước 2: Khảo sát hàm số\[g(x) = x - {11^x}\]

Xét hàm số \[g\left( x \right) = x - {11^x}\] ta có

\[g'\left( x \right) = 1 - {11^x}.\ln 11 = 0 \Rightarrow x = {\log _{11}}\frac{1}{{\ln 11}} = {x_0}\]

Bảng biến thiên:

Cho phương trình 11^x + m = log 11 ( x − m )  với mm là tham số. Có bao nhiêu giá trị nguyên của  m thuộc ( − 205 ; 205 )  để phương trình đã cho có nghiệm? (ảnh 1)

Bước 3: Biện luận nghiệm theo m.

Để phương trình đã cho có nghiệm thì\[m < g\left( {{x_0}} \right) \approx - 0,78\]

Kết hợp điều kiện đề bài ta có\(\left\{ {\begin{array}{*{20}{c}}{ - 205 < m \le - 1}\\{m \in \mathbb{Z}}\end{array}} \right.\)

Vậy có 204 giá trị của nguyên của m thỏa mãn yêu cầu bài toán. 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP