Câu hỏi:
27/06/2022 166Cho \[0 \le x \le 2020\]và \[lo{g_2}(2x + 2) + x - 3y = {8^y}\]. Có bao nhiêu cặp số (x;y) nguyên thỏa mãn các điều kiện trên?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\[{\log _2}\left( {2x + 2} \right) + x - 3y = {8^y} \Leftrightarrow {\log _2}\left( {x + 1} \right) + x + 1 = {2^{3y}} + 3y\left( * \right)\]
Xét hàm số \[y = f\left( x \right) = {2^x} + x\] có\[f'\left( x \right) = {2^x}\ln 2 + 1 > 0\,\,\forall x \in \mathbb{R}\]=> Hàm số đồng biến trên \(\mathbb{R}\)
⇒ Phương trình (*)\[ \Leftrightarrow f\left( {{{\log }_2}\left( {x + 1} \right)} \right) = f\left( {3y} \right) \Leftrightarrow {\log _2}\left( {x + 1} \right) = 3y\]
Do \[0 \le x \le 2020\] nên \[0 \le {\log _2}\left( {x + 1} \right) \le {\log _2}2021 \Rightarrow 0 \le 3y \le {\log _2}2021\]
\[ \Leftrightarrow 0 \le y \le \frac{{{{\log }_2}2021}}{3} \Rightarrow y \in \left\{ {0;1;2;3} \right\}\]Với mỗi giá trị y vừa tìm được đều tìm được đúng 1 giá trị x nguyên thỏa mãn
⇒Có 4 cặp số (x;y) nguyên thỏa mãn các điều kiện trên.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Câu 2:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Câu 3:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Câu 4:
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Câu 5:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]
Câu 6:
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!