Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 10)

  • 64 lượt thi

  • 50 câu hỏi

  • 150 phút

Câu 1:

PHẦN 1: TƯ DUY ĐỊNH LƯỢNG

Lĩnh vực: Toán học (50 câu – 75 phút)

Câu 1. Dưới đây là biểu đồ thống kê số giày bán được của một cửa hàng giày trẻ em trong tháng 12/2023 (đơn vị: đôi giày).

Media VietJack

Số giày cỡ 35 chiếm bao nhiêu phần trăm?

Xem đáp án
Số giày cỡ 35 bán được chiếm bao nhiêu phần trăm tổng số giày đã bán trong tháng 12/2023 là \(\frac{{85}}{{30 + 60 + 95 + 110 + 120 + 85 + 40}} \cdot 100\%  \approx 15,74\% \). Chọn B.

Câu 2:

Người ta trồng \[3\,\,240\] cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?

Xem đáp án

Giả sử trồng được \(n\) hàng cây \[\left( {n \ge 1\,,\,\,n \in \mathbb{N}} \right)\].

Số cây ở các hàng tạo thành một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 1\).

Theo giả thiết: \[{S_n} = 3240 \Leftrightarrow \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = 3240\]

\( \Leftrightarrow n\left( {n + 1} \right) = 6480 \Leftrightarrow {n^2} + n - 6480 = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{n = 80\,\,\,({\rm{TM}})}\\{n =  - 81\,\,\,(\;{\rm{L}})}\end{array}} \right.\).

Vậy có tất cả 80 hàng cây. Chọn C.


Câu 3:

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \[2a,\] cạnh bên tạo với đáy một góc \(60^\circ .\) Thể tích khối chóp \(S.ABC\) là

Xem đáp án

Media VietJack

Gọi \(O\) là tâm đường tròn ngoại tiếp \(\Delta ABC\) thì \(SO \bot \left( {ABC} \right).\) Suy ra \(\widehat {SAO} = 60^\circ .\)

\(AO = \frac{2}{3} \cdot 2a \cdot \frac{{\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\,,\,\,SH = AO \cdot \tan 60^\circ  = 2a.\)

Diện tích \(\Delta ABC\) là \({S_{ABC}} = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 .\)

Thể tích khối chóp \(S.ABC\) là \(V = \frac{1}{3} \cdot {S_{ABC}} \cdot SO = \frac{{2{a^3}\sqrt 3 }}{3}.\)

Chọn A.

Câu 4:

Cho số phức \(z\) thỏa mãn \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i.\) Mô đun của số phức \(w = \left( {z + 1} \right)\bar z\) bằng

Xem đáp án

Ta có \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i \Leftrightarrow \left( {3 + 2i} \right)z = 1 + 5i \Leftrightarrow z = \frac{{1 + 5i}}{{3 + 2i}} = 1 + i.\)

Suy ra \(w = \left( {z + 1} \right)\bar z = z \cdot \bar z + \bar z = \left( {1 + i} \right)\left( {1 - i} \right) + 1 - i = 2 + 1 - i = 3 - i\) \[ \Rightarrow \left| w \right| = \sqrt {10} .\]

Chọn B.


Câu 5:

Trong không gian với hệ trục tọa độ \[Oxyz,\] cho tứ diện \[ABCD\] có \[A\left( {2\,;\,\, - 1\,;\,\,1} \right),\,\]\[\,B\left( {3\,;\,\,0\,;\,\, - 1} \right),\]\[C\left( {2\,;\,\, - 1\,;\,\,3} \right),\,\,D \in Oy\] và có thể tích bằng 5. Tổng tung độ của các điểm \(D\) là

Xem đáp án

Do \(D \in Oy\) nên \(D\left( {0\,;\,\,y\,;\,\,0} \right)\).

Suy ra .

Khi đó \(\left[ {\overrightarrow {DA} \,,\,\,\overrightarrow {DB} } \right] = \left( {1 + 2y\,;\,\,5\,;\,\,y + 3} \right)\).

Ta có \[{V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {DA} \,,\,\,\overrightarrow {DB} } \right] \cdot \overrightarrow {DC} } \right| = 5\]\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2y + 6 = 30}\\{2y + 6 =  - 30}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{y = 12}\\{y =  - 18}\end{array}} \right.} \right..\)

Vậy \({y_1} + {y_2} = 12 - 18 =  - 6\). Chọn A.


Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận