Câu hỏi:
21/06/2024 388
Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9.\] Chọn ngẫu nhiên một số \(\overline {abc} \) từ \[S.\] Xác suất để số được chọn thỏa mãn \(a \le b \le c\) là
Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9.\] Chọn ngẫu nhiên một số \(\overline {abc} \) từ \[S.\] Xác suất để số được chọn thỏa mãn \(a \le b \le c\) là
Quảng cáo
Trả lời:
Gọi số tự nhiên có 3 chữ số là \[\overline {abc} \,\,\left( {0 \le a,\,\,b,\,\,c \le 9,\,\,a \ne 0} \right).\]
Suy ra số phần tử của \(S\) là: \(9 \cdot 10 \cdot 10 = 900\) (phần tử).
Chọn ngẫu nhiên một số từ \(S\) nên \(n\left( \Omega \right) = 900.\)
Gọi \(A\) là biến cố: "Số được chọn thỏa mãn \(a \le b \le c\)".
• TH1: \(a < b < c.\)
Chọn 3 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có \(C_9^3\) số thoả mãn.
• TH2: \(a = b < c\) có \(C_9^2\) số thỏa mãn.
• TH3: \(a < b = c\) có \(C_9^2\) số thỏa mãn.
• TH4: \(a = b = c\) có 9 số thỏa mãn.
\[ \Rightarrow n\left( A \right) = C_9^3 + 2 \cdot C_9^2 + 9 - 165.\] Do đó \(P(A) = \frac{{{n_A}}}{{{n_\Omega }}} = \frac{{165}}{{900}} = \frac{{11}}{{60}}.\)
Đáp án: \(\frac{{11}}{{60}}.\)
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.