Câu hỏi:
21/06/2024 5,405Quảng cáo
Trả lời:
Ta có \(3\cos \left( {x + \frac{\pi }{6}} \right) - m + 5 = 0 \Leftrightarrow \cos \left( {x + \frac{\pi }{6}} \right) = \frac{{m - 5}}{3}.\)
Điều kiện để phương trình có nghiệm: \( - 1 \le \frac{{m - 5}}{3} \le 1 \Leftrightarrow 2 \le m \le 8.\)
Do \(m\) nguyên nên \(m \in \left\{ {2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8} \right\}.\)
Vậy có 7 số nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).
Câu 2:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?
Câu 3:
Câu 5:
Cho hàm số \(f\left( x \right) = 2\left| {x - 1} \right|.\) Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 2 \right) + F\left( 0 \right) = 5.\) Giá trị của biểu thức \(P = F\left( 3 \right) + F\left( { - 2} \right)\) bằng
Câu 6:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận