Câu hỏi:

21/06/2024 351

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 1\,,\,\,AD = AA' = \sqrt 3 .\) Gọi \[M,\,\,N\] lần lượt là trung điểm của \(A'B'\) và \[BC.\] Góc giữa hai đường thẳng \[MN\] và \[AC\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \[P\] là trung điểm của \[AB.\]

Khi đó \[NP\] là đường trung bình của tam giác \(ABC\) nên \(\left\{ {\begin{array}{*{20}{l}}{NP\,{\rm{//}}\,AC}\\{NP = \frac{1}{2}AC = 1}\end{array}} \right..\)

Do \(NP\,{\rm{//}}\,AC\) nên \(\left( {\widehat {MN,\,\,AC}} \right) = \left( {\widehat {MN,\,\,NP}} \right) = \widehat {MNP}.\)

Xét tam giác ABC vuông tại \(B\) có \(AC = \sqrt {A{B^2} + B{C^2}}  = 2.\)

Do \[M,\,\,P\] lần lượt là trung điểm của \(A'B'\) và \(AB\) nên \(MP = AA' = \sqrt 3 .\)

Xét tam giác \[MNP\] vuông tại \(P\) có \(\tan \widehat {MNP} = \frac{{\widehat {MP}}}{{NP}} = \sqrt 3  \Rightarrow \widehat {MNP} = 60^\circ .\)

Vậy \(\left( {\widehat {MN,\,\,AC}} \right) = 60^\circ .\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Parabol có dạng \((P):y = a{x^2}\)

\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)

Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)

Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

Đáp án: 251.

Lời giải

Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.

Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne  - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m <  - 2}\\{m > 5}\end{array}} \right.}\\{m \ne  - 11}\end{array}} \right.} \right.} \right.\).

Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP