Câu hỏi:
08/08/2024 43Ở mặt chất lỏng, tại hai điểm S1 và S2 cách nhau 28 cm có hai nguồn dao động cùng pha theo phương thẳng đứng phát ra sóng kết hợp. Gọi \({\Delta _1}\)và \({\Delta _2}\) là hai đường thẳng ở mặt chất lỏng cùng vuông góc với đoạn thẳng \({S_1}{S_2}\) và cách nhau 9 cm. Biết số điểm cục đại giao thoa trên \({\Delta _1}\)và \({\Delta _2}\)tương ứng là 7 và 3. Số điểm cực đại giao thoa trên đoạn thẳng \({S_1}{S_2}\) là
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có hình vẽ:
Từ hình vẽ ta thấy, để trên \[{\Delta _1}\] có 7 cực đại, tại điểm A là cực đại bậc 4 \[ \Rightarrow IA = 4\frac{\lambda }{2} = 2\lambda \]
Trên \[{\Delta _2}\]có 3 cực đại, tại điểm B là cực đại bậc 2 \[ \Rightarrow IB = 2\frac{\lambda }{2} = \lambda \]
Khoảng cách giữa \({\Delta _1}\)và \({\Delta _2}\)là: \[AB = 3\lambda = 9\left( {cm} \right) \Rightarrow \lambda = 3\left( {cm} \right)\]
Số điểm cực đại trên đoạn S1S2 là: \[n = 2\left[ {\frac{{{S_1}{S_2}}}{\lambda }} \right] + 1 = 2.\left[ {\frac{{28}}{3}} \right] + 1 = 19\] (cực đại)
Đáp án: 19.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?
Câu 2:
Câu 4:
Câu 5:
Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).
Câu 6:
Ông Khoa muốn xây dựng một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng \[288{\rm{ }}{m^3}.\] Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là \[500\,\,000\] đồng/\[{m^2}.\] Nếu ông Khoa biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi ông Khoa phải trả chi phí thấp nhất bao nhiêu triệu đồng để xây dựng bế đó (biết độ dày thành bể và đáy bể không đáng kể)?
Câu 7:
Gọi \(\left( S \right)\) là tập hợp các điểm trong mặt phẳng tọa độ có tọa độ thỏa mãn hệ \(\left\{ {\begin{array}{*{20}{l}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right..\) Trong \(\left( S \right)\) điểm có tọa độ \(\left( {x,\,\,y} \right)\) làm cho biểu thức \(F\left( {x,\,\,y} \right) = y - x\) đạt giá trị nhỏ nhất là
về câu hỏi!