Câu hỏi:
21/06/2024 3,198Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật, cạnh \(AB = 2AD = a.\) Tam giác \[SAB\] đều và nằm trong mặt phẳng vuông góc với đáy \(\left( {ABCD} \right).\) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBD} \right)\) bằng
Quảng cáo
Trả lời:
Gọi \(H\) là trung điểm của \[AB.\]
Từ giả thiết, suy ra \(SH \bot \left( {ABCD} \right).\)
Từ \(H\) kẻ \(HG \bot BD\) tại \(G\), kẻ \(HI \bot SG\) tại I.
Suy ra \[HI \bot \left( {SBD} \right) \Rightarrow d\left( {H,\,\,\left( {SBD} \right)} \right) = HI.\]
Ta có \(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2},SH = \frac{{a\sqrt 3 }}{2}.\)Lại có nên \(\frac{{HG}}{{AD}} = \frac{{BH}}{{BD}} \Rightarrow HG = \frac{{AD \cdot BH}}{{BD}} = \frac{{\frac{a}{2} \cdot \frac{a}{2}}}{{\frac{{a\sqrt 5 }}{2}}} = \frac{{a\sqrt 5 }}{{10}}.\)
Khi đó \(\frac{1}{{H{I^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{G^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 5 }}{{10}}} \right)}^2}}}\). Suy ra \(HI = \frac{{a\sqrt 3 }}{8}.\)
Lại có \(d\left( {A,\,\,\left( {SBD} \right)} \right) = 2d\left( {H,\,\,\left( {SBD} \right)} \right) = 2 \cdot HI = 2 \cdot \frac{{a\sqrt 3 }}{8} = \frac{{a\sqrt 3 }}{4}.\) Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.