Đọc đoạn trích sau đây và trả lời câu hỏi:
Tôi yêu chuyện cổ nước tôi
Vừa nhân hậu lại tuyệt vời sâu xa
Thương người rồi mới thương ta
Yêu nhau dù mấy cách xa cũng tìm
Ở hiền thì lại gặp hiền
Người ngay thì gặp người tiên độ trì
Mang theo chuyện cổ tôi đi
Nghe trong cuộc sống thầm thì tiếng xưa
Vàng cơn nắng, trắng cơn mưa
Con sông chảy có rặng dừa nghiêng soi.
(Chuyện cổ nước mình – Lâm Thị Mȳ Dạ)
Câu thơ “Thương người rồi mới thương ta” (in đậm) trong đoạn thơ gợi nhắc đến truyền thống nào của dân tộc Việt Nam?
A. Yêu nước. B. Nhân đạo. C. Hiếu học. D. Biết ơn nguồn cội.
Đọc đoạn trích sau đây và trả lời câu hỏi:
Tôi yêu chuyện cổ nước tôi
Vừa nhân hậu lại tuyệt vời sâu xa
Thương người rồi mới thương ta
Yêu nhau dù mấy cách xa cũng tìm
Ở hiền thì lại gặp hiền
Người ngay thì gặp người tiên độ trì
Mang theo chuyện cổ tôi đi
Nghe trong cuộc sống thầm thì tiếng xưa
Vàng cơn nắng, trắng cơn mưa
Con sông chảy có rặng dừa nghiêng soi.
(Chuyện cổ nước mình – Lâm Thị Mȳ Dạ)
Quảng cáo
Trả lời:
Câu thơ “Thương người rồi mới thương ta” gợi nhắc đến truyền thống nhân đạo (thương người) của dân tộc Việt Nam. Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.