Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = 2,\,\,AD = 2\sqrt 3 \), tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, khoảng cách giữa hai đường thẳng \[AB\] và \[SC\] bằng 3. Thể tích của khối chóp \[S.ABCD\] bằng \(a\sqrt 3 \) với \(a\) là số nguyên dương. Khi đó, giá của của \(a\) bằng
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = 2,\,\,AD = 2\sqrt 3 \), tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, khoảng cách giữa hai đường thẳng \[AB\] và \[SC\] bằng 3. Thể tích của khối chóp \[S.ABCD\] bằng \(a\sqrt 3 \) với \(a\) là số nguyên dương. Khi đó, giá của của \(a\) bằng
Quảng cáo
Trả lời:
Gọi \[H,\,\,I\] lần lượt là trung điểm của \[AB,\,\,CD,\] kẻ \(HK \bot SI\) tại \[K.\]
Vì tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right).\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot HI}\\{CD \bot SH}\end{array} \Rightarrow CD \bot \left( {SIH} \right)} \right.\)
\( \Rightarrow CD \bot HK \Rightarrow HK \bot \left( {SCD} \right)\)Mặt khác \(CD\,{\rm{//}}\,AB\) nên \(d\left( {AB\,,\,\,SC} \right) = d\left( {AB,\,\,\left( {SCD} \right)} \right) = d\left( {H,\,\,\left( {SCD} \right)} \right) = HK\)
Suy ra \(HK = 3\,;\,\,HI = AD = 2\sqrt 3 .\)
Trong tam giác vuông \[SHI\] có \(SH = \sqrt {\frac{{H{I^2} \cdot H{K^2}}}{{H{I^2} - H{K^2}}}} = \sqrt {\frac{{{{\left( {2\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {2\sqrt 3 } \right)}^2} - {3^2}}}} = 6.\)
Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot 6 \cdot 4\sqrt 3 = 8\sqrt 3 .\) Suy ra \(a = 8.\)
Đáp án: 8.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.