Câu hỏi:
13/07/2024 2,489Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = 2,\,\,AD = 2\sqrt 3 \), tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, khoảng cách giữa hai đường thẳng \[AB\] và \[SC\] bằng 3. Thể tích của khối chóp \[S.ABCD\] bằng \(a\sqrt 3 \) với \(a\) là số nguyên dương. Khi đó, giá của của \(a\) bằng
Quảng cáo
Trả lời:
Gọi \[H,\,\,I\] lần lượt là trung điểm của \[AB,\,\,CD,\] kẻ \(HK \bot SI\) tại \[K.\]
Vì tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right).\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot HI}\\{CD \bot SH}\end{array} \Rightarrow CD \bot \left( {SIH} \right)} \right.\)
\( \Rightarrow CD \bot HK \Rightarrow HK \bot \left( {SCD} \right)\)Mặt khác \(CD\,{\rm{//}}\,AB\) nên \(d\left( {AB\,,\,\,SC} \right) = d\left( {AB,\,\,\left( {SCD} \right)} \right) = d\left( {H,\,\,\left( {SCD} \right)} \right) = HK\)
Suy ra \(HK = 3\,;\,\,HI = AD = 2\sqrt 3 .\)
Trong tam giác vuông \[SHI\] có \(SH = \sqrt {\frac{{H{I^2} \cdot H{K^2}}}{{H{I^2} - H{K^2}}}} = \sqrt {\frac{{{{\left( {2\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {2\sqrt 3 } \right)}^2} - {3^2}}}} = 6.\)
Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot 6 \cdot 4\sqrt 3 = 8\sqrt 3 .\) Suy ra \(a = 8.\)
Đáp án: 8.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận