Câu hỏi:

13/07/2024 2,489

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = 2,\,\,AD = 2\sqrt 3 \), tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, khoảng cách giữa hai đường thẳng \[AB\] và \[SC\] bằng 3. Thể tích của khối chóp \[S.ABCD\] bằng \(a\sqrt 3 \) với \(a\) là số nguyên dương. Khi đó, giá của của \(a\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \[H,\,\,I\] lần lượt là trung điểm của \[AB,\,\,CD,\] kẻ \(HK \bot SI\) tại \[K.\]

Vì tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right).\)

Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot HI}\\{CD \bot SH}\end{array} \Rightarrow CD \bot \left( {SIH} \right)} \right.\)

\( \Rightarrow CD \bot HK \Rightarrow HK \bot \left( {SCD} \right)\)

Mặt khác \(CD\,{\rm{//}}\,AB\) nên \(d\left( {AB\,,\,\,SC} \right) = d\left( {AB,\,\,\left( {SCD} \right)} \right) = d\left( {H,\,\,\left( {SCD} \right)} \right) = HK\)

Suy ra \(HK = 3\,;\,\,HI = AD = 2\sqrt 3 .\)

Trong tam giác vuông \[SHI\] có \(SH = \sqrt {\frac{{H{I^2} \cdot H{K^2}}}{{H{I^2} - H{K^2}}}}  = \sqrt {\frac{{{{\left( {2\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {2\sqrt 3 } \right)}^2} - {3^2}}}}  = 6.\)

Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot 6 \cdot 4\sqrt 3  = 8\sqrt 3 .\) Suy ra \(a = 8.\)

Đáp án: 8.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Parabol có dạng \((P):y = a{x^2}\)

\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)

Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)

Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

Đáp án: 251.

Lời giải

Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.

Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne  - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m <  - 2}\\{m > 5}\end{array}} \right.}\\{m \ne  - 11}\end{array}} \right.} \right.} \right.\).

Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Sông nào sau đây có mùa lũ vào thu-đông? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Khó khăn lớn nhất của Đông Nam Bộ trong phát triển nông nghiệp là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay